Search published articles


Showing 4 results for Denitrification

M Eshraghi, B Ayati, H Ganjidoust,
Volume 2, Issue 4 (3-2010)
Abstract

Backgrounds and Objectives : Nitrogen compounds in wastewater are mainly in four types of organic, am- monia, nitrite and nitrate. Total nitrogen concentration in municipal wastewater is usually within 25 to 45 mg/L as nitrogen. The most important problem with nitrogen is its oxygen demand and human health effect.
Materials and Methods: Anaerobic Baffled Reactor (ABR) is a system in which baffles are used to direct  wastewater flow. During 9 months study, a 15 liter modified ABR (104*30*15 cm) with eight baffled com- partments was used for nitrification-denitrification processes. In the seventh compartment, the wastewater was aerated to oxidize ammonia to nitrite and nitrate.
Results : Denitrification was done in the first four compartments with removal efficiency from 60 to 84 per- cent for nitrite and nitrate, respectively. During the shock loading study (4 times of the last influent), a sharp decrease in nitrogen removal rate was observed which was then returned to the previous efficiency after 11 days. Artificial neural network was used to evaluate and process the data in which the observed error in 10 patterns was less than 15 percent.
Conclusion : Anaerobic baffled reactor with an influent of up to 200 mg/L has capability to remove total  nitrogen concentration to less than the standard level of Iranian Department of Environment of 50 mg/L as nitrate and 10 mg/L as nitrogen.


B. Mortazavi, B. Ramavandi, G.r Mousavi,
Volume 3, Issue 1 (4-2010)
Abstract

Background and Objectives: Nowadays nitrate concentrations in surface water and especially in groundwater have increased in many locations in the world. Since nitrates cause many health and environmental concerns, increased nitrate concentrations in groundwater have led to rendered aquifers unusable as water sources. So, as the water demand is still increasing the throughout the world, decreasing the nitrate concentration in drinking water is imperative. Magnesium powder has been determined to be potentially useful for the removal of nitrate in the water environment. This research is aimed at subjecting the kinetics of nitrate chemical reduction by Mgo to an analysis of some factors affecting the chemical denitrification.
Materials and Methods: Nitrate concentrations determined in 220 nm using a spectrophotometer.To determine the performance of nitrate removal by Mg0 powder, double distilled water was used for preparation of reagents and simulation of contaminated water with nitrate.All experiments were triplicate and the averaged results were reported.
Results: Kinetics analysis from batch studies revealed that the denitrification reaction with Mgo powder appeared to be a first-order with respect to substrate and the observed reaction rate constant (kobs). The effects of mixing intensity on the denitrification rate suggest that the denitrification appears to be coupled with oxidative dissolution of magnesium through a largely mass transportlimited surface reaction. Also in the denitrification by Mgo determined that Mgo dose related with kobs ( R2>0/99 )S
Conclusion: In this research was determined that denitrification effectively by Mg0 powder can achieved in a wide range of concentrations under atmospheric conditions and without pH controlling within short reaction time. Denitrification rate was related to some parameters such as contact time, Mgo dosage, mixing rate and initial nitrate concentration.

 


H Godini, A Rezaee, F Beranvand,
Volume 3, Issue 2 (7-2010)
Abstract

Backgrounds and Objectives: Nitrate is a water contaminant that can cause health problems in human and animals, in addition to eutrophication of the water body. So, Nitrate-contaminated water may be treated by treatment systems. In this study, hydrogenotrophic denitrification using hydrogen produced by Fe0 as an electron donor to nitrate removal was evaluated to assess the feasibility of employing Fe0 in the biological nitrate treatment.
Materials andMethods : Batch experiments were conducted using 250 ml amber bottles at 20-35oC under anoxic conditions. The nitrate concentration in each reactor was 20 mg N/L and triplicate samples were prepared for the following treatment: Fe0 plus cells, Fe0 only, and control. The effect of Fe+2 and temperature on nitrate reduction was evaluated.
Results : 97 percent of Nitrate was reduced within 2 day in a Fe0-cell reactor, while only 30% of the nitrate was abiotically reduced over 2 day at 30 oC. Fe+2, which is produced during anaerobic iron corrosion in the Fe0-cell system, might act as an electron donor for nitrate. Abiotic reduction and microbial reduction of nitrate was significantly affected by temperature conditions. The reduction rate decreased as the temperature deceased.
Conclusion:This study demonstrated the potential applicability of employing Fe0 as a source of electrons for biological nitrate reduction. Use of Fe0 for microbial nitrate reduction can obviate the disadvantages associated with traditional biological denitrification that relies on the use of organic substrates or explosive hydrogen gas.


Abdolmotaleb Seid-Mohammadi, Hossein Movahedian Attar, Mahnaz Nikaeen,
Volume 5, Issue 4 (2-2013)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Contamination of drinking water sources with nitrate may cause adverse effects on human health. Due to operational and maintenance problems of physicochemical nitrate removal processes, using biological denitrification processes have been performed. The aim of this study is to evaluate nitrate removal efficiency from drinking water using autotrophic denitrifying bacteria immobilized on sulfur impregnated activated carbon in a fluidized bed bioreactor.
Materials and Methods: After impregnating activated carbon by sulfur as a microorganism carriers and enrichment and inoculation of denitrifying bacteria, a laboratory-scale fluidized bed bioreactor was operated. Nitrate removal efficiency, nitrite, turbidity, hardness and TOC in the effluent were examined during the whole experiment under various conditions including constant influent nitrate concentration as 90 mg NO3--N/l corresponding to different HRT ranging from 5.53 to 1.5 hr.
Results: We found that  the denitrification rates was depended on the hydraulic retention time and the nitrate removal efficiency was up to 98%  and nitrite concentration was lower than 1mg/l at optimum HRT=2.4 hr respectively. Moreover, there was no difference in hardness between influent and effluent due to supplying sodium bicarbonate as carbon source for denitrifying bacteria.  However pH, TOC, hardness, and turbidity of the effluent met the W.H.O guidelines for drinking water. 
Conclusion: This study demonstrated that an innovative carrier as sulfur impregnated activated carbon could be used as both the biofilm carrier and energy source for treating nitrate contaminated drinking water in the lab-scale fluidized bed bioreactor.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb