Search published articles


Showing 2 results for Fe3o4

B Kakavandi, R Rezaei Kalantary, A Jonidi Jafari, A Esrafily, A Gholizadeh, A Azari,
Volume 7, Issue 1 (7-2014)
Abstract

Background and Objective: Extreme use of antibiotics and discharging them to the environment lead to serious consequences. Activated carbon is the most commonly adsorbent for these contaminants but its main drawback is difficulty of its separation. The objective of this study was synthesis of magnetic activated carbon by Fe3O4 and investigating its efficiency in adsorption of amoxicillin from synthetic wastewater. Materials and Methods: Materials and Methods: Physical and structural characteristics of the adsorbent synthesized were analyzed using SEM, TEM, XRD and BET techniques. The effect of factors like pH, initial concentration of amoxicillin and adsorbent, contact time, and temperature were investigated to determine thermodynamic parameters, equilibrium isotherms, and kinetics of adsorption process. Results: Physical characteristics of the magnetized activated carbon showed that Fe3O4 nanoparticles had the average size of 30-80 nm and BET surface area was 571 m2/g. The optimum conditions of adsorption were: pH=5, contact time=90min, adsorbent dose of 1g/L and temperature 200C. The equilibrium isotherms data showed that the adsorption process fitted both Freundlich and Longmuir models with the maximum capacity of 136.98 mg/g. The kinetic of the adsorption process followed pseudo second-order model. The negative values of &DeltaH0 and &DeltaG0 obtained from studying the adsorption thermodynamic suggested that amoxicillin adsorption on magnetic activated carbon was exothermic and spontaneous. Conclusion: The present study showed that the magnetic activated carbon has high potential for adsorption of amoxicillin, in addition to features like simple and rapid separation. Therefore, it can be used for adsorption and separation of such pollutants from aqueous solutions.


Leila Karimi Takanlu, Mahdi Farzadkia, Amir Hossein Mahvi, Ali Esrafily, Masoumeh Golshan,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: Cadmium can enter water resources through the industrial wastewater. It could cause intensivly damages to the liver and kidney of humans. Magnetic iron nanoparticles are used to control and eliminate heavy metals from industrial effluents through the mechanisms of adsorption, ion exchange and electrostatic forces. The aim of this study was to evaluate the efficiency of magnetic nanoparticles for adsorption of cadmium. Methods: The magnetite nanoparticles were prepared by co-precipitation method through the addition of bivalent and trivalent iron chloride under alkaline conditions. Characteristics of nanoparticles including particles structure, composition and size were determined using analytical devices such as XRD, SEM, and FT-IR. For optimization of adsorption process of cadmium, some parameters such as pH, contact time, initial concentration of cadmium, nanoparticles concentration, and temperature were studied under different conditions. Results: It was found that 95% of cadmium could be removedAt pH &ge 5.6, 10 mg/L initial cadmium concentration, a dose of 1 mg synthesized magnetite nanoparticles, 10 minutes contact time, and 200 rpm mixing rate at 25 °C. The isotherm of adsorption follows the Langmuir model (R2 < 0.995). Maximum capacity of cadmium adsorption was found to be 20.41 mg/g. Conclusion: Magnetite nanoparticles exhibit high capability for removal of cadmium. The nanoparticles synthesized could be used at industrial scale because of having the magnetic property, which make them easily recovered from aqueous solution through applying a magnetic field.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb