Search published articles


Showing 2 results for Geo-Accumulation Index

S Mazloomi, A Esmaeili - Sari, N Bahramifar, M Moeinaddini,
Volume 10, Issue 2 (9-2017)
Abstract

Background and Objective: Street dust is considered as one of the important sources of particulate matters and heavy metals in the atmosphere. The goal of this study was to assess the heavy metals pollution in street dust of Tehran and evaluate their ecological risk.
Materials and Methods: The sampling of street dust was carried out in two areas at the east and west of Tehran. After preparation of samples, the concentration of heavy metals was measured by ICP-MS. The pollution level of heavy metals in the street dust was assessed using geo-accumulation index (Igeo), pollution index (PI), integrated pollution index (IPI), enrichment factor (EF) and ecological risk index (RI).
Results: The results of the calculations of the indices showed that the street dust in both studied areas was non-polluted with Li, Al, Ti, V, Cr, Mn, Fe, Ni, Sr and Ba. The origin of these elements was mainly natural sources. However, Cd, Cu, As, Zn, Sn and Pb had medium to high level of contamination. These elements had a very high to extremely high enrichment in both areas. Their origin was mainly anthropogenic sources. The ecological risk index indicated a moderate ecological risk for the east and a low ecological risk for the west area.
Conclusion: The higher level of lead in the East is the main reason of higher ecological risk of this area. Therefore, the heavy metals pollution of the street dust, especially lead and its enterance into the environment, should be considered in this area.
 

Abbas Taati, Mohammad Hasan Salehi, Jahangard Mohammadi, Reza Mohajer,
Volume 13, Issue 2 (8-2020)
Abstract

Background and Objective: Heavy metal contamination of surface soils has become a serious concern. The aim of this study was to evaluate the potential risk of heavy metal (loid) pollution on human health in the surface soils of Arak industrial areas, the capital of Markazi province in western Iran.
Materials and Methods: 235 surface soil samples were collected from a depth of 0-5 cm. Concentrations of lead, cadmium, nickel, zinc, copper and arsenic were determined by digestion with nitric acid (4 N). The level of soil pollution in the region was measured using geo- accumulation index (Igeo) and enrichment factor (EF). The model proposed by the U.S Environmental Protection Agency (USEPA) was used to assess the health risks of heavy metals.
Results: The Mean concentrations of Pb, Cd, As, Cu, Ni, and Zn were 37.88, 1.17, 151.78, 13.48, 92.98 and 104.04 mg/kg, respectively. The calculated enrichment factor values ​​for soil samples varied from deficiency to significant enrichment. The mean geo-accumulation index (Igeo) for Pb, Cd, Cu, Ni, Zn and arsenic were 0.37, 1.59, -2.53, -0.48, -0.63 and 2.9, respectively. The results of the health risk assessment showed that hazard quotient (HQ) for children and adults through the ingestion route was higher than dermal contact and inhalation pathway. The Hazard index values for all studied metals were lower than the safe level of 1 except for As. Arsenic showed the highest risk of carcinogenicity (CR) for children (2.37 x 10-4) through ingestion.
Conclusion: The carcinogenic risk (CR) of As in children and adults is higher than the safe limit of 1 × 10-4, which indicates an unacceptable risk.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb