Search published articles


Showing 3 results for Groundwater Resources

Mohaad-Reza Mohebbi, Koshyar Azam Vaghefi, Ahmad Montazeri, Mehrnoosh Abtahi, Sogol Oktahi, Reza Gholamnia, Fatemeh Aliasgari, Reza Saeedi,
Volume 6, Issue 2 (9-2013)
Abstract

Background and objectives: In this research, an innovative drinking water quality index for assessing water resources as “modified drinking water quality index (MDWQI)” was developed and applied for evaluating all of the groundwater resources utilized for community water supply in urban areas of Iran during 2011. Materials and methods: Twenty-three water quality parameters and relevant Iranian standards for drinking water quality were selected as input parameters and benchmarks respectively. The MDWQI is calculated using three factors including the number of parameters that excurse benchmarks, the number of measurements in a dataset that excurse benchmarks and the magnitude of excursions. The MDWQI scores range from 0 to 100 and classify water quality in five categories as excellent (95-100), good (80-94), fair (65-79), marginal (45-64), and poor (0-44). Results: According to the MDWQI value, about 95% of the groundwater resources were in the good condition and the others were in the fair or marginal condition also the best and the worst water quality of water resources were observed in Ardebil Province and Qom Province respectively. The three parameters of fluoride, magnesium, and nitrate recorded the highest rates of violation to be 74, 32, and 13% respectively. Conclusion: The nationwide average score of the MDWQI was 85 (good description). This study indicated that the MDWQI and its sub-indices could describe the overall water quality of water bodies easily, reliably and correctly and have the potential suitability for extensive application all over the world.


R.s Hajimirmohammad Ali, H Karyab,
Volume 8, Issue 4 (3-2016)
Abstract

Background and Objective: The concentration of nitrate, factors affecting the balance sheet, and the changes in an aquifer is of utmost importance. Because modeling is an efficient method to predict the concentration of ions in water resources, in this study using lumped-parameter model and Monte Carlo simulation model, the nitrate concentrations in groundwater resources of Qazvin Plain were estimated and analyzed.

Materials and Methods: A total of 19 wells in different climates of saline watershed in Qazvin Plain were selected and entry and exit routes of nitrate to these sources were analyzed using lumped-parameter model.  Finally, Monte Carlo simulation was used to determine the probability of the estimated nitrate concentration in aquifer.

Results: Application of lumped-parameter model for a part of a part of groundwater resources in Qazvin Plain watershed predicted the nitrate concentration in the range of 8.12 to 15.94 mg/l.   The maximum concentration was estimated in cold-dry climate with 12.8±0.04 mg/L. Moreover, it was found that the difference between the estimated nitrate concentration and factors affecting its concentration in different climates was significant (p<0.05).

Conclusion: Despite the predicted concentrations of nitrate in the study area were in accordance with the Iran national standard for drinking purposes, the cumulative probability of Monte Carlo simulation showed that the possible violation of nitrate from the safe limit of 10 mg/l in the study area is 90% (p = 0.005).


M Hadi, Z Aboosaedi, H Pasalari,
Volume 12, Issue 1 (5-2019)
Abstract

Background and Objective: Scaling and corrosion both are destructive to materials (usually metals) in water supply systems. A dataset (from 2002 to 2013) of groundwater resources (including springs, qanats, deep wells and semi-deep wells) were examined for water tendency to corrosion or scaling in rural regions of Kashan, a city in Isfahan, central Iran.
Materials and Methods: Water quality parameters including pH, temperature, Ca (mg/L), CO32- (mg/L), HCO3-(mg/L) and TDS (mg/L) were used to estimate water stability indices. Value of qualitative indices including Langelier (LSI), Ryznar (RSI), Puckorius (PSI) and trend of Calcium Carbonate Precipitation Potential (CCPP) as a quantitative index were calculated and analyzed for all water resources.
Results: Mean of LSI, RSI and PSI for all water resources were estimated to be 0.41±0.02, 6.39 ± 0.03, and 7.40±0.02, respectively. The CCPP value found to be 17.23±3.16, 15.66±1.38, 41.23±11.22, and 23.15±4.46 mg/L for springs, qanats, deep wells and semi-deep wells, respectively. The CCPP index was significantly increased from 2002 to 2013, with an average of 1.6 units per year.
Conclusion: A significant scaling tendency was observed. This tendency in decreasing order was observed in deep wells, semi-deep wells, springs and qanats. The estimated CaCO3 scale weight per cubic meter of water was 21 g on average, which may be problematic for water distribution systems. Water withdrawal management and reduction in TDS of water resources, perhaps through decrease in agricultural drainage, can be effective to reduce the scaling tendency.   
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb