Search published articles


Showing 5 results for H2o2

A.r Yazdanbakhsh, A Sheikh Mohammadi, M Sardar, H Mohammadi, M Zarabi,
Volume 2, Issue 4 (3-2010)
Abstract

Backgrounds and Objectives: A great part of organic compounds cause more pollution in natural  waters meet, are chemical dye material. Azo dyes have more usage in different industries. Azo dyes not only give undesirable dye to the water but also have mutation potential and carcinogenesis effects in human and cause the production of toxic substances in water environments.The purpose of this study is investigation of iron powder, hydrogen peroxide and iron powder-hydrogen peroxide processes in removal of acid yellow 36 dye from aqueous solutions.
Materials and Methods: This study was conducted in laboratory scale. At this experiment synthetic solution was made from acid yellow 36 dye, and the removal of acid yellow 36 dye was studied by iron powder, hydrogen peroxide and iron powder- hydrogen peroxide processes .Also effect of dye concentration, pH solution, hydrogen peroxide concentration, iron powder concentration and the time of contact on decolorization, were evaluated.
Results: The results showed that iron powder - hydrogen peroxide process, compared to two other  process has high decolorization power. Removal efficacy of iron powder-hydrogen peroxide process with H2O2 =23.33 ml / L, pH =3, iron powder 2000 mg/L and 60 minute ,was about 97.9%
Conclusion:In general this investigation showed that , this method (Iron powder-hydrogen peroxide process) has high efficiency for removal of Azo dyes. But application this method in the industry, should be economically evaluated.


M.h Dehghani, S Nasseri, M Ghaderpoori, A.h Mahvi, R Nabizadeh Nodehi,
Volume 3, Issue 4 (1-2011)
Abstract

Backgrounds and Objective: Surfactants are one of the largest pollutants which exist in urban and industrial wastewaters. Large quantities of surfactants have entered to the environment since last decade due to increased use of synthetic detergent in industrial and home consumptions.In this study, the efficiency of UV/H2O2 process in removal of linear alkylbenzane sulfonate (LAS) from aqueous solutions was investigated.
Materials and Methods: In this study methylene blue active substane(MBAS)method and spectrometery were used to determine anion and residual surfactant respectively. In this study important variables were H2O2 concentration, initial concentration of surfactant, pH and duration of UV radiation. The effect of UV/H2O2 process on the degradation of LAS was analyzed statistically by using Multiple Linear Regression test.
Results: The resulted showed that after 20 minute, ultraviolet radiation solely removed 38.44 percent of Anionic detergent, Hydrogen peroxide showed no significant removal of detergent solution in the time course study. The efficiency of UV/H2O2 process in 10, 20 and 30 minute were to 86.2, 90 and 96.5 %, respectively.
Conclusion: The results showed that the efficiency of ultraviolet radiation and hydrogen peroxide process in anionic detergent was not significant thoogh it was considerable in combination process (UV/H2O2).


Mohammad Reza Mehrasbi, Sorur Safa, Amir Hossein Mahvi, Ali Assadi, Hamed Mohammadi,
Volume 5, Issue 3 (10-2012)
Abstract

Backgrounds and Objectives: The base structure of total petroleum hydrocarbons (TPH) is made of hydrogen and carbon. Widespread use, improper disposal and accidental spills of this compounds lead to long term remaining of contaminations such as organic solvents and poly aromatic hydrocarbons (PAHs) in the soil and groundwater resources, resulting in critical environmental issues. In this study, an oil-contaminated soil was washed using Tween 80 surfactant and the application of photo-Fenton process (UV/Fe2+/H2O2) for treatment of the produced wastewater was evaluated.
Materials and Methods: Tween 80 is a yellow liquid with high viscosity and soluble in water. In order to determine of the photo-Fenton process efficiency, we studied effective variables including Fe concentration, pH, H2O2 concentration, and irradiation time. The UV irradiation source was a medium-pressure mercury vapor lamp (400 w) vertically immersed in the solution within 2L volume glass cylindrical reactor.
Results: The results showed that efficiency of COD removal depends on the initial Fe concentration, pH, H2O2 concentration and irradiation time.
Under optimum conditions, (Fe: 0.1mM, H2O2: 0.43 mM, pH: 3 and UV light irradiation time: 2 hours) the removal efficiency of COD was 67.3%. pH plays a crucial role in the photo-Fenton process such that the removal efficiency increased with decreasing of pH.
Conclusion: According to the results of this study, under acidic condition, this process is an efficient method for COD removal from the wastewater studied.


Leila Moradi Pasand, Bita Ayati,
Volume 6, Issue 3 (12-2013)
Abstract

Background and Aim: In this study, the removal of dye blue reactive-171 by combination of advanced oxidation processes UV/H2O2 and SBAR has been investigated. Methods: The efficiency of chemical and biological system was first investigated separately. In chemical system, the kind, power, initial dye concentration and hydrogen parasitize and in biological system, hydraulic detention time, aeration rate, initial dye concentration and the percent removal of dye and COD were investigated. In order to investigate the hybrid system, after determination of the optimum conditions and the capabilities of each system, the removed chemical system effluent from residual hydroxide peroxide, was entered into the biological reactor. Results: In the chemicals process, 100 ppm dye using 150 Watt-UV-C lamp and 0.1 mM hydrogen peroxide at pH= 9 was completely removed in 25 minutes. COD removal was 86.7 percent at the end of the experiment (135 min). Biological system with adsorption mechanism has shown 44 percent dye removal with initial COD of 50 mg/L that indicated the system inability in biodegradation and breaking down of the dye molecule. In comparison to separate chemical and biological processes, hybrid system has shown better dye removal efficiency. The results indicated that in addition to the complete dye removal achievement, 81% of COD in the first hybrid system and 52% of COD in the second hybrid system was removed, respectively. Conclusion: According to the results, because of complexity of dye structure, biological system was not able to remove the dye as efficient as hybrid system of advanced oxidation processes UV/H2O2 with SBAR.


Alireza Rahmani, Jamal Mehralipoor, Amir Shabanlo,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objective: Electrochemical methods as one of the advanced oxidation processes (AOPs), have been applied effectively to degrade recalcitrant organics in aqueous solutions. In the present work, the performance of electro-Fenton (EF) method using iron electrodes on the degradation of phenol was studied. Materials and Methods: In this study, a lab-scale EF batch reactor equipped with four electrodes and a DC power supply was used for removing phenol. The effect of operating parameters such as pH, voltage, H2O2 and initial phenol concentration and operating time were evaluated. We added H2O2 manually to the reactor while iron anode electrode was applied as a ferrous ion source. Results: It was found that initial pH of the solution, initial H2O2 concentration, applied voltages were highly effective on the phenol removal efficiency in this process, so that 87% of phenol after 15 min of reaction at pH=3.0, voltage 26 V and H2O2 100 mg/L was removed. Phenol removal efficiency decreased with increasing pH, so that at pH 10, after 15 min, efficiency was 11%. To remove 99.99% phenol at pH 3, 100 mg/L concentration of H2O2 and voltage 26 V for 60 min was required. Conclusion: Electro-Fenton process using iron electrodes for phenol degradation and remediation of wastewater could be a promising process.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb