Search published articles


Showing 2 results for Help

M.j Zoqi, A Ghavidel,
Volume 4, Issue 1 (5-2011)
Abstract

Background and Objectives:. Owing to the non-seperated municipal solid wastes the leachate form in land fills contain high amounts of heavy metalls and toxic substances Hence, leachate treatment is a serious problem. In order to design leachate treatment and collection systems, estimation of quality and quantity of leachate is of high necessity. Hydrologic Evaluation of Landfill Performance (HELP) Model was used to estimate leachate generation in the lined landfill cells for a variety of conditions. The HELP program is a quasi-two-dimensional hydrologic model for conducting water balance analysis of landfills, cover systems, and other solid waste containment facilities. In this paper HELP program is used to predict leachate generating in Semnan landfill after its operational life.
Materials and Methods: HELP model use weather, soil and design data to estimate leachate quantity. The meteorological data were obtained from semnan Atmospheric Data Centre. Soil mechanics examinations in the landfill area were applied to achieve soil data. In addition, design parameters were based on Semnan landfill design specifications. Semnan landfill capacity is designed so as to accommodate municipal solid wastes generated during the next 25 years.
Results: In this study result indicated that precipitation and evapotranspiration has the most influenced on leachate generation increase and decrease, respectively. 82% of annual precipitation isn't percolated into Semnan landfill due to evapotranspiration. HELP Model simulations were indicated that the maximum and average value of leachate height above barrier layer is 36 and 3mm,respectively.
Conclusion: Semnan landfill is designed under minimum standard condition. Therefore, low height of leachate generated is due to area weather. The precipitation amount is low while the evapotranspiration amount is high in this area. High evapotranspiration is due to high temperature and solar radiation in Semnan landfill area. High evapotranspiration in the landfill cap caused 14.2% of the precipitation to infiltrate into the wastes and became leachate.


Azad Mollaei, Reza Rafie, Mazaher Moeinaddini, Sayyed Hossein Khazaei,
Volume 14, Issue 2 (9-2021)
Abstract

Background and Objective: The purpose of this study was to use the HELP model to estimate the leachate generation rate and its pattern in a landfill located in the semi-arid region of Iran.
Materials and Methods: The input data for the model were collected through fieldwork. To evaluate the accuracy of outputs, the actual amount of leachate production has been measured on-site for 10 months. In addition, sensitivity analysis was conducted to find out the most important parameters in leachate generation in the landfill.
Results: The results showed that the model was able to estimate the rate of leachate generation with an accuracy of 75.5% and the correlation between the model's estimated values and actual values was 60%. In addition. the sensitivity analysis showed that the most important factors affecting the leachate generation in the landfill were waste moisture content and rainfall, respectively.
Conclusion: The model showed satisfactory performance in the prediction of leachate generation in the arid area. The model showed that the moisture content of the waste significantly contributes to leachate generation in Karaj landfill and therefore, it is suggested to identify and implement procedures to reduce the moisture content of the waste at the source of generation.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb