Abdolmotaleb Seid Mohammadi, Ghorban Asgari, Reza Shokoohi, Parastoo Shahbazi,
Volume 13, Issue 3 (11-2020)
Background and Objective: Considering the importance of alkalinity in pH regulation and its buffering role, in this study, the effect of inlet wastewater alkalinity on the efficiency of the anaerobic unit of the wastewater treatment plant. Moreover, a superior chemical compound in providing alkalinity to wastewater was investigated.
Materials and Methods: This study was performed in the treatment plant to determine the relationship between input alkalinity and removal efficiencies of COD, BOD5 and TSS. In order to determine the optimal alkali material for superb anaerobic wastewater performance, four common chemical substances including, NaOH, Na2CO3, Ca(OH)2 and MgO were selected and examined using One Factor At Time (OFAT) test method.
Results: According to the results maximum removal efficiencies were obtained 62, 66.6 and 71.2% for COD, BOD5 and TSS, respectively under alkaline condition of 1260 mg/L CaCO3. Furthemore, the optimal dose to supply one unit of alkalinity by Na2CO3, Ca(OH)2 and MgO were 0.53, 0.54 and 0.3 mg/L, respectively. These values were obtained 5 min contact time and mixing rate of 150 rpm. However, for NaOH the optimal dose supply was obtained 0.35 mg/L for 3 min contact time and mixing rate of 100 rpm.
Conclusion: In conclusion, the performance of anaerobic baffled reactor is highly related to the supply of influent alkalinity to the reactor. In addition, the use of MgO can be considered as a suitable alkaline substance to neutralize acidic wastewater and provide alkalinity for ABR system.