Search published articles


Showing 10 results for Health Risk

Ghh Abdollahzadeh, M Sharif Sharifzadeh, Z Qadami Amraei,
Volume 9, Issue 4 (3-2017)
Abstract

Background and Objective: Chemical pesticides are considered a vital component of farming and play a substantial role in maintaining high agricultural productivity. Concerns regarding the health and environmental effects of the pesticides have been increased in recent years. Therefore, this research aimed to assess farmers’ awareness about the positive and negative impacts of pesticides and their health risk on human.

Materials and Methods: A survey study was carried out between two groups of farmers including chemical pesticide users (n= 126) and biological pesticide users (n = 98). The users were randomly selected from 20 villages. The studied villages were selected from two sub-districts by cluster sampling method. An expert-verified questionnaire that its design and contents were assessed by local professionals was used in this research. The reliability of the questionnaire was confirmed based on the calculated Cronbach Alpha Coefficient for two constructs of awareness: positive (0.75) and negative (0.83) impacts of pesticides.

Results: Results indicated that the farmers using biological control were well aware of the harmful impacts of pesticide and hence they used less pesticides than the chemical pesticide users. Although the two groups of the farmers highlighted the health impacts of chemical pesticides such as human and animal health threat, and pollution of surface and underground water, the users of biological control methods had more concerns in this regards. Most of the respondents stated that the pesticides caused serious health problems such as exhaustion, sweating, cough and headache, dizziness, skin inflammation and irritation, nausea and vomiting.

Conclusion: Even though the farmers were well aware of the impacts of pesticides use, they have less often used personal protective equipment. In order to promote farmers’ awareness of pesticide impacts, more efforts are needed to strengthen training programs and facilitate access to extension services.


N Ghanavati,
Volume 11, Issue 1 (6-2018)
Abstract

Background and Objective: The aim of the present study was to investigate risk of heavy metals on human health including (Pb, Zn, Cu, Cr, Cd, Ni, V, As and Co) in street dusts in Abadan.
Materials and Methods: 30 dust samples were collected from sidewalks of main streets of Abadan and analyzed by inductively coupled spectroscopy (ICP-OES) method.
Results: The mean concentration of the heavy metals was as follows: Pb (59.13), Zn (287.50), Cu (112.97), Cr (50.30), Cd (0.52), Ni (56.77), V (35.83), As (10.7) and Co (7.33) (mg/kg). The concentration of all of the heavy metals, except V, in the dust samples was several times higher than the field concentration (concentration in the earth's crust). The average value of the potential ecological risk of the heavy metals V, Cr, Zn, Ni, As, Cu and Pb was low and had a low potential ecological risk. Cd had a moderate potential ecological risk. Also, based on the average value of Risk Index, the samples were at medium risk. Cumulative non-carcinogenic hazard of all the heavy metals in the street dust was higher for children than adults. This indicates that children are more at risk for heavy metals than the adults. In both age groups, Cr had the highest risk of carcinogenicity and Pb had the lowest risk.
Conclusion: The results indicated that the main source of the heavy metals in the study area is anthropogenic sources such as traffic, industrial facilities and burning of fossil fuels.
 

Zeinab Alizadeh, Kavoos Dindarloo, Mohsen Heidari,
Volume 14, Issue 3 (12-2021)
Abstract

Background and Objective: Heavy metal (HM) pollution of settled dust on the interior surfaces of elementary schools may affect the health of young students; hence, the health risk of such pollution should be assessed. Therefore, the aims of this study were to measure the content of heavy metals in the settled dust in the indoor of elementary schools in Bandar Abbas and to assess the attributed health risks.
Materials and Methods: In this study, dust samples were collected from the interior surfaces of elementary schools in Bandar Abbas. Settled dust samples were digested using aqua regia solution and then their metals contents were measured using ICP-OES. To assess the health risk attributed to this pollution, daily intake doses through ingestion, inhalation and skin absorption routes were estimated. Then, non-carcinogenic and carcinogenic risks were calculated considering the daily intake doses and toxicity factors.
Results: The average concentrations of arsenic, cadmium, cobalt, chromium, nickel and lead in settled dust were 5.45, 0.58, 11.44, 69.72, 83.95 and 66.72 mg/kg, respectively. The non-carcinogenic risk level for all metals was below threshold, while the carcinogenic risk level for arsenic (2.18×10-6) exceeded the threshold.
Conclusion: This study showed that the settled dust in elementary schools of Bandar Abbas is polluted with various levels of heavy metals. Health risk assessment showed that the exposure to dust containing heavy metals in the elementary schools of Bandar Abbas does not pose significant non-carcinogenic risk, but the carcinogenic risk of As exceeded the threshold limit and should be considered.

Gholamali Javedan, Hamid Reza Ghaffari, Zoha Heidarinejad, Nahid Zeraei, Somayeh Hoseinvandtabar, Fateme Pourramezani, Mehrdad Ahmadi,
Volume 15, Issue 1 (4-2022)
Abstract

Background and Objective: The aim of this study was to investigate the concentration of potentially toxic elements (arsenic, lead, copper, cadmium and mercury) in black tea imported to southern Iran and to assess the risk of carcinogenic and non-carcinogenic exposure to consumers.
Materials and Methods: For this purpose, 94 samples of black tea from 15 brands imported from India in 2021 were selected. Heavy metals concentrations were measured using an atomic absorption spectrometer (GBC model SAVANTAA). After determining the concentration of heavy metals in black tea samples, health risk assessment was determined using Montocarlo simulation technique.
Results: According to the results, the average concentrations of heavy metals namely arsenic, lead, copper, cadmium and mercury were 0.03±0.02, 0.02±0.16, 15.67±7.69, 0.02±0.01 and 0.006±0.005 mg/kg, respectively. The hazard quotient (HQ) of the heavy metals arsenic, lead, copper, cadmium and mercury were 1.07×10-2, 6.37×10-3, 3.45×10-5, 2.05×10-2 and 7.19×10-4, respectively.
Conclusion: Therefore, according to the findings, it can be concluded that the concentrations of potentially toxic elements (arsenic, lead, copper, mercury and cadmium) in black tea were consistent with the standard level of Iran and World Health Organization. Additionally, the average carcinogenic risk index for arsenic metal was 4.49×10-6, which is much lower than the acceptable level of carcinogenic risk (10-6). Therefore, the concentrations of five potentially toxic elements in the studied black tea did not show any significant risk for consumers.
 

Hengameh Tarviji, Sakineh Shekoohiyan, Gholamreza Moussavi, Mohsen Heidari,
Volume 15, Issue 2 (8-2022)
Abstract

Background and Objective: In some villages of Mazandaran, drinking water may be polluted with various pollutants, especially heavy metals (HMs), due to the shallow depth of drinking water sources and the proximity of these sources to farmlands. Therefore, this study aimed to measure the HM pollution level of drinking water in some villages of Mazandaran province and to assess the attributed health risks.
Materials and Methods: HMs content of drinking water in 30 villages with separate water sources in Mazandaran province was measured. Concerning the HMs concentration and toxicity, and exposure route through water drinking, carcinogenic and non-carcinogenic risks were assessed using a Monte-Carlo simulation-based method.
Results: The concentration values of arsenic, cadmium, chromium, nickel and lead in water were <1/0-4.26, < 0.05, <0.15-3.74, <0.3-10.89, and <0.8-4.68 µg/L, respectively. The hazard index (HI) values for non-carcinogenic risk due to the exposure to HMs through drinking of water in various age groups ranged from 3.04E-04 to 9.94E-04. Values of cumulative excess lifetime cancer risk (ELCRT) for As and Cr were 9.72E-08 and 6.13E-08, respectively.
Conclusion: The results of this study showed that, fortunately, the concentration of metals in drinking water in the studied area was much lower than the national standards and the attributed health risk. Therefore, the drinking water sources in the studied villages had acceptable quality. However, due to the existence of rice paddies in some villages of Mazandaran province, continuous monitoring of pollution levels in the drinking water sources of these areas is essential.
 

Hamid Kariab, Mohammad Mehdi Emamjomeh, Sheida Zakariaie,
Volume 15, Issue 4 (3-2023)
Abstract

Background and Objective: Due to the presence of heavy metals (HMs), sludge produced in industrial wastewater treatment plants (WWPT) is classified as special waste and can cause adverse health effects. The present study aimed to identify special wastes and assess the risk associated with the presence of HMs in the sludge of WWTP from an Industrial City.
Materials and Methods: Identifying the special wastes was conducted using a checklist, and classification was performed in accordance with the Basel Convention. Ecological risk assessment was done by determining the geo-accumulation and ecological indexes. The estimation of health risk was done by determining HQ and ELCR indexes.
Results: The highest amount of special waste was allocated to sludge with a value of 3900.0 kg/month. Chromium was detected in the highest concentration (95.89 ± 52.15 mg/kg). The level of chromium and nickel pollution was evaluated in the low range, and cadmium was very severe. The ecological risk of lead was estimated in a significant range and was very high for cadmium. The HQ was less than 1, and the ELCR for inhalation and dermal exposure was estimated to be lower than the acceptable risk level of WHO.
Conclusion: The present study showed that the largest amount of special waste is dedicated to sludge. Although the concentration of  HMs was lower than the acceptable limits, the sludge had a high ecological risk level. Therefore, the accumulation and transfer of sludge must be carried out under the provisions of the Basel Convention and environmental considerations.

Ehsan Aghayani, Sakine Shekoohiyan, Ali Behnami, Ali Abdolahnejad, Mojtaba Pourakbar, Hamed Haghnazar, Vahideh Mahdavi, Amir Mohammadi,
Volume 16, Issue 1 (6-2023)
Abstract

Background and Objective: Heavy metals in water can pose risks to human health. Therefore, it is necessary to monitor and measure metals to ensure the health of consumers.
Materials and Methods: This study aimed to measure heavy metals such as arsenic, lead, cadmium, chromium, zinc, and mercury in water resources and urban water distribution networks in spring and summer of 2021 in Maragheh city. Accordingly, 25 samples were taken to investigate the presence of heavy metals. The presence of these metals in water sources was investigated using qualitative maps and finally, by evaluating the health risk caused by the presence of these metals, their effect on the health of consumers has been studied.
Results: Examining the concentration of metals in water resources upstream of the dam shows a relatively high concentration of metals, especially arsenic (13.2 µg/L). Despite this, the amount of arsenic after the water treatment plant and in the distribution network is reduced to an insignificant level. On the other hand, the results show that the amount of zinc metal in the network is higher than in the reservoir of the dam, and its concentration in the dam is equal to zero and in the network, it reaches the highest value of 578 µg/L. Finally, the health risk assessment shows that the calculated THI values for all samples vary between 0.01 and 0.99.
Conclusion: Based on the calculated health risk, there is no threat to the health of consumers regarding heavy metals in Maragheh drinking water. Also, these results double the necessity of additional studies regarding the leakage of zinc metal from the pipes and accessories of the city's drinking water distribution network in the future.
 

Sara Ghayour, Abbas Rezaee, Mohsen Heidari,
Volume 16, Issue 1 (6-2023)
Abstract

Background and Objective: Agricultural lands around Tehran may become contaminated due to their proximity to pollution sources and such pollution should be investigated. Therefore, the main objectives of this study were to determine the pollution levels of some trace elements in the agricultural soils around Tehran and to assess the attributed health risks.
Materials and Methods: In this study, 43 soil samples were collected from agricultural lands around Tehran. The soil samples were prepared and acid-digested and the concentrations of Vanadium (V), Lithium (Li), Lanthanum (La), Molybdenum (Mo), and Antimony (Sb) were measured by ICP-OES. Based on the concentrations of the elements in soil, the pollution indices and non-carcinogenic risk (based on Monte Carlo simulation) were assessed.
Results: Among the studied elements, V had the highest concentration (131 mg/kg) followed by La > Li > Sb > Mo. The values of the geoaccumulation index (Igeo) and enrichment factor (EF) were in the ranges of -1.9 to 0.8 and 0.5 to 3.1, respectively. The Nemerow integrated pollution index (NIPI) values were in the range of 1.3 to 2.0. The values of non-carcinogenic risk for Li, Mo, Sb, and V were negligible, but it exceeded the threshold limit for La.
Conclusion: This study showed that the agricultural lands around Tehran are contaminated with studied trace elements to a low to moderate extent. However, an unacceptable non-carcinogenic risk attributed to La was estimated. Therefore, it is essential to pay special attention to the La pollution of agricultural soils around Tehran.
 

Alireza Zarasvandi, Maryam Delphi, Nadia Azizi, Fatima Rastmanesh, Gazelle Zarasvandi,
Volume 16, Issue 3 (12-2023)
Abstract

Background and Objective: During the last few decades, heavy metal pollution in indoor dust has been widely studied; While, the quality of the environment inside the cars has not been considered enough. Therefore, the specific objectives of this study generally include investigating the levels of selected heavy metals in the dust of private cars collected from Ahvaz city, as well as evaluating the health risk of carcinogenesis and exposure to the dust inside these cars through ingestion, inhalation, and skin absorption.
Materials and Methods: 10 cars were selected for this study. The condition of choosing the cars was not to wash the car for a week. Then, samples were collected and coded from the dust of the air conditioner filter and the cabin of each car. To determine the composition of heavy metals, spectroscopic analysis (ICP) was performed on the samples.
Results: The study of non-carcinogenic risk index (HI) in the present study indicates that the values of more than 1 and the health risk is high. The sequence of HI index values for heavy metals was obtained as  Pb>Cu>Cr> Fe> Zn> Cd> Ni. Evaluated risks from different pathways in children was HQing < HQinhder while in adults follows HQingder< HQinh process. Additionally, the values of enrichment factor of the studied samples showed the maximum and minimum values for Cu (4.3) and Ni (8.3), the maximum and minimum geoaccumulation index for Fe (12.75) and Ni (1.9) and the amount of integrated pollution and pollution index were estimated to be 1.34+E27 and 2.07+E9, respectively, indicating the average range for the studied heavy metals.
Conclusion: According to this study, the risk of non-carcinogenic risk of heavy metals (except Fe and Cu) for children is estimated to be higher than that of adults. Furthermore, the investigation of the CR index for the three carcinogenic heavy metals (cadmium, chromium, and arsenic) has exceeded the safe level, which indicates ingestion and inhale as the target pathways for the worst adverse effects of heavy metals in children andadults, respectively. In the present study, the amount of heavy metals studied is more than the set standards. The results of the current study showedthe more enrichment of heavy metals in the car filter as compared with  the cabin.
 

Zahra Moavi, Khoshnaz Payandeh, Mehrnosh Tadayoni,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: Heavy metals are dangerous pollutants in the environment that accumulate in food. This research was conducted with the aim of evaluating the health risks and contamination of some heavy metals in lettuce and cabbage in the cities of Hamidieh, Dezful and Ramhormoz in Khuzestan province.
Materials and Methods: The sampling was completely random, with three repetitions, and 15 samples of each of the lettuce and cabbage vegetables grown in each region were prepared. Heavy metals were measured using the Perkin Elmer 4100 atomic absorption device. Heavy metal risk assessment was conducted using soil pollution indicators and health risk assessment method.
Results: The highest amount of metal in cabbage is related to zinc (5.84±0.15 mg/kg), while the lowest amounts of chromium metal in lettuce (0.11±0.005 mg/kg) was achieved. Based on the daily absorption of heavy metals in lettuce and cabbage products, the results showed that the highest hazard index (HQ) values, ​​related to lead metal in cabbage for children and adults, were 3.9376 and 3.4253, respectively, compared to other heavy metals. The highest value of the carcinogenicity index in children was 0.0133 for cabbage consumption. The carcinogenic index of chromium metal in lettuce and cabbage products had the lowest values (0.0003 and 0.0004). Regarding the metal enrichment factor, lead, chromium, copper and cobalt were higher in the agricultural soils of Ramhormoz compared to other regions, while nickel and zinc were higher in the soils of Hamidiyeh than in Dezful and Ramhormoz. The soil index of accumulation of chromium, zinc and copper in the soil of Dezful agricultural fields was higher, whereas lead and cobalt were higher in Hamidiyeh soils than in Dezful and Ramhormoz. Additionally, nickel was higher in Ramhormoz agricultural fields.
Conclusion: According to the soil pollution indicators, cobalt metal played an important role in the soil pollution in Dezful, Hamidiyeh and Ramhormoz, while the metals lead, nickel, chromium, copper and zinc showed minimal pollution levels in the soil of the studied areas. The health risk assessment of soil heavy metals showed that the risk index for lead, nickel, chromium, copper, zinc and cobalt was lower than 1. Additionally, the carcinogenicity index of heavy metals for both adults and children was less than 10-4. The health risk assessment of heavy metals and their risk index showed that the consumption of lettuce and cabbage in these areas can lead to various health problems in people.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb