Showing 4 results for Hexavalent Chromium
A Rahmani, R Norozi, M.t Samadi, A Afkhami,
Volume 1, Issue 2 (3-2009)
Abstract
Background and Objectives:Groundwater treatment by nano particles has received increasing interest in recent years. Chromium is a commonly identified contaminant in soils and groundwater. Zero-valent iron, as a natural reduction agent can be used in controlling of contaminated sites. The aim of this research is investigation of hexavalent chromium removal from aqueous solutions by using of iron nano particles the effective parameters. Materials and Methods: In this research the synthesized of the iron nano particles has performed by addition of NaBH4 to FeCl3·6H2O solution and Cr(VI) reduction efficiency in Batch system was studied. Also the impact of the important field parameters including pH, initial chromium concentration, nano zero valent iron concentration and retention time were investigated.
Results:The results of this research showed that synthesized particles were in nano scale. In pH=3, chromium inlet concentration of 10 mg L-1, nano zero valent iron concentration 0.5 g L-1 and 2 minute retention time, 100% of Cr(VI) was removed.
Conclusion:The concentration of nano zero valent iron had significant effect on the reduction of Cr(VI).The reaction occurred in a wide range of pH value and the reaction efficiency increased significantly with decreasing initial pH. The significant removal efficiency, high rate of process and short reaction time were showed that iron nano particles have significant potential in removal ofCr(VI) from contaminated water.
B. Mortazavi, L. Rasuli, H. Kazemian,
Volume 3, Issue 1 (4-2010)
Abstract
Backgrounds and Objectives: Hexavalent Chromium is an important contaminant in surface and ground waters and removal from contaminated water and waste water has received interest in recent years. Modified Zeolite with cationic surfactant can remove Cr(VI) from contaminant water. The aim of this research is investigation of Cr (VI) removal from aqueous solutions and its effective parameters by using Modified Zeolite with cationic surfactant.
Materials and Methods:In this research the efficiency Of Cr(VI) removal and impact of the important parameters including adsorbent dose, pH and contact time in the batch system was studied.
Results:The results of this research showed that SMZ can remove more than 90 & Cr(VI) in the concentration 0.1-1.25 mg/l with optimum dose 0.3 gr and pH=6 120 minute in contact time.
Conclusion: Modified natural zeolite have significant potential inCr(VI) removal fromcontaminated water.Maximumpercent removal ofCr(VI)was in the pH=6 and 120minute contact time.Adsorption data in the equilibrium was fitted with Langmuir isotherm. Separation factor was between 0 and 1 that indicates the favorable condition for Cr(VI) adsorption on the SMZ.
B Mortazavi, B Barikbin, Gh.r Moussavi,
Volume 3, Issue 3 (10-2010)
Abstract
Backgrounds and Objectives: Geological situation and/or anthropogenic contamination contain an increased concentration of ions such as hexavalent chromium as well as some other dissolved components such as sulfate in the upper of the establishedMCLs (50µg/L). In this paper, simultaneous removal of Cr (VI) and sulfate from water was investigated using nanofiltration as a promising method for reaching drinking water standards.
Materials and Methods: For varying pressure, pH , anion and cation solution effect, Sulfate and Cr (VI) concentration which have chosen were levels found in drinking water sources (Cr=0.1- 0.5mg/L) and (SO4-2= 100-800mg/L).Experiments were performed using NaCl, Na2SO4,K2 Cr2O7and anhydrous CrCl3. 6H2O which prepared with de mineralized water on procedure detailed in standard methods. All salts were purchased from Merck Corporation with purity over 99'.
Results: The results for hexavalent chromium experiments showed that when the concentration decreases, the chromate anions were given a better retention to 4 bars (96'). But when the concentration increases, concentration polarization led to increased removal of Cr (VI) (98'). For Cr (III) the influences of the ionic strength as well as the concentrations were strongly dependant on rejection but operating pressure were found weak. In addition, with increasing total dissolved solids, perfect rejection of chromium was seen. The effect of pH showed that better retention was obtained at natural and basic pH.
Conclusion: This study indicates that the nature of anions and cations, driven pressure and pH have significant effect on nano filtration operation. Research findings show that it seems nano filtration is a very good promising method of simultaneous removal of Cr (VI) and sulfate from water.
M Shirzad Siboni, M. T Samadi, A.r Rahmani, A.r Khataee, M Bordbar, M.r Samarghandi,
Volume 3, Issue 3 (10-2010)
Abstract
Backgrounds and Objectives: Industrial wastewater included the heavy metal is one of the important sources of environmental pollution. Hexavalent chromiumand divalent nickel are founded in plating wastewater which is harmful for human health and environment. Therefore, the purpose of this research is investigation of photocatalytic removal of hexavalent chromium and divalent nickel from aqueous solution using UV/TiO2 process in a batch system.
Materials andMethods: At first, reactor was designed. Then, optimumdosage of TiO2 was obtained equal to 1 g/L, with variation TiO2 dosage at constant pH and initial concentrations of hexavalent chromium and divalent nickel. The effect of pH, contact time and initial concentration of hexavalent chromium was studied at the constant amount of TiO2 (1gr/L).
Results: The result showed that photocatalytic removal efficiency increased with increasing reaction time and TiO2 dosage. In addition, it was found that removal efficiency of hexavalent chromium was decreased by increasing initial chromium concentration and pH. But, photocatalytic removal efficiency of nickel ion was increased and decreased by increasing of pH and initial nickel concentration, respectively.
Conclusion: The results showed that UV/TiO2 was an effective method in removal of hexavalent chromium and divalent nickel from aqueous solutions