Search published articles


Showing 4 results for Irrigation

Ehsan Olyaie, Hossein Banejad, Ali Reza Rahmani, Abbas Afkhami, Javad Khodaveisi,
Volume 5, Issue 3 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Arsenic is one of the most toxically contaminants in groundwater and soils. Due to the ability of bio-accumulation of arsenic III in plants through irrigation with contaminated water and its entrance to the food chain, irreparable hazards would be caused. The aim of this research is the feasibility study of arsenic III removal from polluted water using calcium peroxide nanoparticles synthesized and also studying the effective parameters. Moreover, the adding effect of nanoparticles on the important parameters of irrigation would be assessed.
Materials and Methods: In this research, we first synthesized CaO2 nanoparticles through chemical precipitation and then studied the arsenic removal efficiency from contaminated water samples. Nevertheless, the impact of the effective parameters including pH, initial arsenic III concentration, and CaO2 nanoparticles concentration were investigated. Finally, relevant results to nanoparticles effect on the important irrigation water quality parameters were presented.
Results: Our results showed that synthesized particles were in the range of 25-50 nanometers. In addition, the efficiency of the CaO2 nanoparticles in arsenic III removal was 88 percent under following conditions:  irrigation pH range 6.5-8.5, nanoparticles dosage 40 mg/L, arsenic initial concentration 400 µg/L, and 30 minuts retention time. Moreover, the nanoparticles synthesized did not have any undesirable impact on significant parameters in irrigation water.
Conclusion: Generally, it can be concluded that CaO2 nanoparticles based on the in situ chemical oxidation had significant effect on the reduction of arsenic III until lower than recommended standards for irrigation water. High rate of process and relatively short reaction time, and having no negative effects on the significant parameters of irrigation indicate that CaO2 nanoparticles have significant potential in removal of arsenic III from contaminated water.


Hossein Banejad, Atieh Zarei, Ali Akbar Safari Sinegani, Farshad Dashti,
Volume 7, Issue 2 (10-2014)
Abstract

Background and Objectives: Reuse of treated wastewater in agriculture is becoming more attractive due to the growing demand for water, particularly in arid and semi-arid regions like Iran.In some areas, industrial wastewaters distribute arsenic in the water and vegetables, among the other plants, are mainly irrigated by municipal and industrial wastewater. This study aimed to evaluate the outcome of radish irrigation using water contaminated with arsenic and zinc and to measure the zinc concentration in the edible parts of radish plant. Materials and Methods: The experiments were designed in the form of a factorial completely randomized design with three replications in which radishes were planted in pots about five kilograms. Arsenic concentration at four levels (0, 100,300 and 600 µg/l) and zinc concentration at three levels (0, 10, and 50 mg/l) were added to the irrigation water. The pots were equally irrigated once every 3 to 4 days. After harvesting and laboratory operations, zinc concentration was measured using atomic absorption spectroscopy. Results: The study indicated that zinc concentration in radish tubers is correlated with the concentration of zinc in water. The results of the analysis of variance table for the effect of zinc and arsenic-contaminated irrigation water on zinc concentration in radish roots, tubers and leafs show only one treatment (zinc concentration in water) on the property is significant at 5 and 1%. The results of the comparison table revealed that Zn uptake was decreased with increasing arsenic up to 300 µg/l. Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.


Maliha Afkhami, Fazel Amiri, Tayebeh Tabatabaie,
Volume 14, Issue 1 (5-2021)
Abstract

Background and Objective: Limited water resources in arid and semi-arid regions are one of the major limiting factors in agricultural production. Thus, unconventional water resources, such as urban treated wastewater, may be used for irrigation. Application of wastewater to the soil may cause accumulation of heavy metals (HMs). Soil pollution causes uptake of these metals by plants and their entrance to the food chain. In the present greenhouse research, concentration variations of HMs (lead (Pb) and cadmium (Cd)( in soil and sweet pepper (Capsicum annuum) plant were investigated.
Materials and Methods: The experiment was conducted as a completely randomized design with three replications and irrigation with different wastewater treated (well water, wastewater treatment and diluted wastewater). To evaluate the effects of different irrigation treatments on soil, parameters of acidity (pH), electrical conductivity (EC), the concentration of heavy metals Pb and Cd in soil were studied.  Additionally, for the effects of irrigation treatments on sweet pepper plant, parameters of biomass weight, fresh and dry weight and Pb and Cd concentrations (in branches, fruits and roots) were measured. The amount of Pb and Cd in the pepper were measured by ICP-OES. The obtained average concentrations were compared using one-way analysis of variance (ANOVA), and the Duncan test was used to determine the differences between groups (p <0.05). The independent t-test was also used to investigate the difference in concentrations of Pb and Cd in soil and water (p <0.05).
Results: The results of chemical analysis of soil and pepper showed that irrigation with wastewater did not cause a significant increase in the concentration of Pb and Cd in the soil and in the branches, fruits and roots of the pepper. The concentration of Pb and Cd in the soil and in the branches, fruits and roots of the pepper was within the allowable and standard concentration range. The difference in lead and cadmium concentrations in the soil before planting was not significant; however, at the end of the study period, the Pb concentration in pepper was higher than the Cd concentration. The use of wastewater increased the fresh and dry weight of branches, fruits and roots of the pepper.
Conclusion: The results showed that Pb and Cd concentration in roots and aerial parts of pepper plant was not increased significantly as a result of wastewater irrigation (p <0.05). The results of this study are limited to one growing season and by the continued use of municipal wastewater, the concentration of Pb and Cd in the soil and then in the plant may exceed the standard. Especially in the case of Pb, which seems to have shown a slight tendency to increase relative to the primary soil and the pepper. Therefore, the continuation of this study is recommended to evaluate the long-term effects of Bushehr municipal treated wastewater on the concentration of heavy elements in soil and plants, and soil properties. Overall, it should be acknowledged that based on technical recommendations, the use of treated wastewater are not recommended.

Abbas Khazaee, Mehrnoosh Abtahi, Mahsa Jahangiri-Rad, Fatemeh Shokri-Daryan, Mohammad Rafiee,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: Identifying the quality of non-conventional waters and exploring their optimal utilization are fundamental measures for maintaining public health. This study aims to investigate the effluent quality of the irrigation canals in Pakdasht farms.
Materials and Methods: In this cross-sectional descriptive study, 120 samples were collected from 6 irrigation canals in Pakdasht fields over a period of 5 months. The physicochemical and microbial characteristics of the canal effluents were determined based on the standard methods of water and wastewater tests. The concentration of heavy metals was measured using an ICP device. To determine the possibility of using the effluent of Pakdasht canals for agricultural purposes, the Environmental Protection Organization of Iran and FAO standards were used.
Results: The average concentrations of COD, BOD5, TSS, TDS, NO3-, SO4-2, PO4-3 parameters were 259, 125, 105, 697, 4.5, 94.4, 13.5 mg/L. Additionally, the average number of total and fecal coliforms in the effluent of the canals exceeded the standard values set by IRNDOE and FAO. The mean pH was 6.97, the electrical conductivity (EC) was 1014 μm/cm, and the turbidity was 76.2 NTU. The detected concentrations of heavy metals were awithin the following ranges: Cr (0.025-0.045 mg/L), Cd (0.0006-0.001 mg/L), Pb (0.0006-0.001 mg/L), Co (0.038-0.059 mg/L), and Ni (0.05-0.06 mg/L), which were roughly lower than the suggested standards. However, both HEI and WWQI indices confirmed that the water was unsuitable for agricultural irrigation.
Conclusion: Based on the comparison of the results of the parameters measured in this study with the environmental and FAO standards, the effluent from the irrigation canals of Pakdasht city is deemed unsuitable for the irrigation of warm-season crops but suitable for fodder and industrial crops.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb