Search published articles


Showing 2 results for Magnetic Adsorbent

Alireza Hajighasemkhan, Lobat Taghavi, Elham Moniri, Amir Hessam Hassani, Homayon Ahmad Panahi,
Volume 13, Issue 1 (4-2020)
Abstract

Background and Objective: Increased use of pesticides and chemical fertilizers in agriculture in order to increase the productivity of fertile lands has led to pollution of water resources with a variety of pollutants, including herbicides. In this study, a new polymer magnetic nanoadsorbent named PV/S-g-3D-GO/N was synthesized and used to remove 2,4-D and MCPA herbicides from aquatic environment.
Materials and Methods: To investigate the synthesized nanoadsorbent structure FTIR, FESEM, TEM, XRD, VSM and TGA techniques were used and the effect of parameters affecting the optimal removal of herbicides by the adsorbent, including pH, temperature, contact time, adsorption dose and initial herbicide concentration was investigated. The kinetic, isotherm and thermodynamic studies of adsorption were also investigated.
Results: The results showed that in the optimal adsorption conditions including pH 3 for both herbicides, contact time of 180 min for 2.4-D herbicide and 300 min for MCPA herbicide, absorption dose 5 g/L and temperature 50°C for both herbicides, the maximum absorption capacity (qmax) was 5.62 mg/g for 2.4-D and 4.94 mg/g for MCPA. The synthesized nanoparticles that were used to remove 2,4-D and MCPA herbicides from real samples were totally successful (100% removal efficiency). For both herbicides studied, the isothermal data followed the Longmuir model (2,4-D: R2 = 0.995; MCPA: R2 = 0.998), and the kinetics of the adsorption process was a pseudo-second-order model (2,4-D: R2 = 0.991; MCPA: R2 = 0.999).
Conclusion: The results of the present study indicate that the synthesized nano-adsorbent can be used to remove phenoxic herbicides from agricultural runoff as well as water sources contaminated with the studied herbicides.

Sara Mirzaei, Mohammad Ahmadi, Nabi Shariatifar, Peiman Ariaii,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: Today with progress and improvement of knowledge of human in the food industry field, plastic coatings owing to their unique properties, is extensively applied for a package of beverages and food like water and milk. Phthalate esters (PAEs) are applied to increase e sustainability, efficiency and flexibility of materials. Chronic exposure to stated compounds has a role in the occurrence of several types of human illnesses and cancer. The purpose of this study is to investigate the presence and amount of phthalate esters in different types of milk supplied in Tehran city by using magnetized nanotube crane with magnetic iron oxide and through GC-MS device.
Materials and Methods: In this research, multi-walled magnetic carbon nanotubes were synthesized by applying iron oxide and then synthesized magnetic nanotubes were applied for absorption and extraction of PAEs from the matrix of milk samples. The number of samples is 60 and has been selected from Tehran, which has been repeated twice. After the preparation of sample, by using GC-MS, each PAEs concentration was assessed. SPSS software was used for data analysis (Kruskal-Wallis and Kolmogorov–Smirnov tests).
Results: The outcomes of this study indicated the mean of total phthalates and DEHP in all samples was 5.26 (ranged from 2.94-8.39) and 0.97 (ranged from nd-2.05) µg/L, which were lower than the existing standards (DEHP standard in water is equal to 6 µg/L).
Conclusion: According to the current results and with regard to the lower concentration of each PAEs compared with the standard levels in different types of Iranian consumed milk, it can be concluded that there is no hazardous effect for consumers. 
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb