Search published articles


Showing 2 results for Mashhad

H Adab, A Atabati, R Esmaili, Gh Zolfaghari, M Ebrahimi,
Volume 10, Issue 1 (6-2017)
Abstract

Background and Objective: Optimum number of air quality monitoring stations in Mashhad is an essential task for management of the urban environment. However, real monitoring and accurate information on the status of air quality require proper spatial distribution of air quality monitoring stations in the city of Mashhad. The aim of the present study was to determine optimum site locations for air quality monitoring, including Downtown Pedestrain Exposure Station, Downtown Background Exposure Station, and Residential Population Exposure Station by three Multiple-Criteria Decision-Making (MCDM) techniques.

Materials and Methods: In the precent study, sites for new air quality monitoring stations t in Mashhad were determined based on a proposed protocol in the United States. Accordingly, the criteria effective for site selection such as population density, distance from existing stations, vicinity to vegitation, vehicle density and other factors were used by applying Analytic Hierarchy Process (AHP), Fuzzy set, and Probability Density Function (PDF).

Results: Location similarity of the sites proposed by decision making methods was evaluated to know its reliability. The compactness of distribution of the proposed sites were compared by applying spatial statistic methods auch as Average Nearest Neighbor (ANN) and Standard. The results from ANN indicated that fuzzy set mapped the suggested sites was fully scattered within the entire city of Mashhad and was statistically significant at 99% confidence level. The PDF method also offered the same spatial pattern as fuzzy set. Overall results of this study indicated spatial optimization of suggested sites location for fuzzy set and PDF.

Conclusion: The overall results of the decision-making methods used in this study indicated that it is necessary to increase number of air quality monitoring stations at Northwest of Mashhad due to the urban growth in the city. The results also showd the possibility of using Probability Density Function (PDF) as a method of decision-making in GIS for locating and ranking of new air quality monitoring stations.


Fatemeh Bagheri, Mehri Rezayi,
Volume 14, Issue 1 (5-2021)
Abstract

Background and Objective: The aim of this study was to investigate dust origin particulate (PM2.5) in Mashhad city in a long period of time (2014-2019) based on unhealthy days. Furthermore, changes in meteorological parameters and their relationship with dust storms have also been investigated.
Materials and Methods: In order to locate dust pollution hotspots in mashhad air, first, information about unhealthy days of Mashhad city in a 5-year period was obtained from the site of Mashhad Pollutants Monitoring Center and then HYSPLIT model was used to locate air pollution hotspots caused by particulate matter. To verify the results, the outputs obtained from this model were also compared with the DREAM8b model.
Results: By examining the meteorological parameters and its relationship with the outputs obtained from THEHYSPLIT and DREAM8b models, the maximum wind speed and relative humidity were obtained in autumn. There was no rainfall in the studied days (19 days) and the highest temperature was related to summer, indicating the relationship between the occurrences of polluted days due to particulate matter less than μ 2.5, wind speed and relative humidity in autumn. The results of the two models showed that the southern and northeastern regions of Mashhad city had the highest source of dust particles during the studied days.
Conclusion:  Although in previous articles, the origin of dust in Mashhad city was announced outside the geographical boundaries of the province, long-term investigation at low altitude (below 10m) showed that local origin of dust have an essential role in air pollution in Mashhad city under unstable atmospheric conditions. Inappropriate use of agricultural lands and severe changes in land use often in the northern region and implementation of construction projects such as the southern belt of Mashhad city play essential roles in increasing PM2.5 particles in the air of Mashhad. This finding shows the importance of decision making for the implementation of soil stabilization projects etc... at the local level.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb