Search published articles


Showing 2 results for Mine Waste

Mohammad Javad Zoqi, Mohammad Amin Rasooli, Behnoosh Khataei, Mohammad Reza Doosti,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: Mining is one of the important economic activities all over the world. It causes the release of various emissions, especially heavy metals in the soil, due to the weak exploitation and improper disposal of mineral wastes. Different techniques are used for soil remediation and heavy metal extraction; including the electrokinetic method (so effective in fine-grained soils). In this research, the electrokinetic process was used to extract copper from the waste of the mine in Birjand.
Materials and Methods: In this research, a 24 cm long PVC reactor was used. The retention time was 2, 4, and 6 days and the voltage gradient was 1 V/cm. Graphite electrodes and electrolyte solutions of nitric acid and citric acid were investigated for copper extraction. The electrode polarity was alternately changed in order to pH control and improve the extraction process.
Results: According to the results, the highest removal efficiency (54%) was obtained after 6 days using 0.1 M citric acid and distilled water in the anode and cathode reservoir, respectively. Further, by 24-hour polarity reversing, the copper removal efficiency increased to about 60%.
Conclusion: The use of citric acid in anode was more effective than nitric acid, leading to more copper removal. In addition, by periodically polarity change and keeping the soil pH in the neutral range, further dissolution of the metal and reducing its sedimentation in the soil occurred. As a result, the rate of its transfer outside the treatment area and removal efficiency increased.
 

Safieh Hassanzad, Hossein Pirkharrati, Masoumeh Ahangari, Farrokh Asadzadeh,
Volume 17, Issue 1 (6-2024)
Abstract

Background and Objective: One of the significant challenges in mining areas is the pollution of the environment by heavy metals. Therefore, it is crucial to assess the pollution risk associated with mining wastes and take action to mitigate their environmental impact. The current study assessed the risk potential of recently deposited tailings in the Songun copper mining area.
Materials and Methods: Based on the conditions of tailings, 26 samples were randomly selected from the recently deposited mine wastes. Twenty-two thin and thin polished sections were prepared for lithology and mineralogy studies. Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) was employed to analyze all 26 samples, while X-ray diffraction method (XRD) was used to analyze a subset of 10 samples.
Results: Sulfide minerals, as the main source of environmental pollution, remain intact and unaffected in the tailings. However, the majority of potentially toxic elements (PTEs) exhibit higher concentrations in the waste composition than the standard levels, resulting in a total ecological risk index of 49.93. Geochemical indicators highlight significant pollution levels for elements such as lead (Pb), arsenic (As), and copper (Cu). The values of the non-carcinogenic risk index for children (except As and Fe) and adults are lower than 1, indicating a non-significant non-carcinogenic health risk. However, the carcinogenicity index also indicates a significant carcinogenic risk in the case of long exposure to wastes, particularly for children.
Conclusion: Therefore, wastes pose a significant environmental risk potential, and due to this risk, proper management of their storage is necessary to prevent the release of PTEs into the environment.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb