Search published articles


Showing 2 results for Peroxymonosulfate

Somaye Akbari, Gholamreza Moussavi, Stefanos Giannakis,
Volume 14, Issue 4 (3-2022)
Abstract

Background and Objective: Imidacloprid, a neonicotinide plant toxin, is used as an insecticide in agriculture. Due to its high degradation resistance and water solubility it is of highly concerns. Therefore, the aim of this study was to investigate the degradation of imidacloprid by modified magnesium oxide catalyst under irradiation of light and peroxymonosulfate.
Materials and Methods: In this study, modification of magnesium oxide with nitrogen was made by sol-gel method and then iron oxide nanoparticles was used as a magnetic source. Operational parameters were catalyst loading, peroxymonosulfate concentration, reaction time and common anions (nitrate, bicarbonate and chloride). Residual concentration of contaminant was measured by high performance liquid chromatography (HPLC) and mineralization rate was evaluated by measuring TOC.
Results: The results of the study showed that the photocatalytic degradation of the pollutant in the optimal condition was as following: catalyst concentration= 150 mg/L, peroxymonosulfate = 75 mg/L and reaction time= 60 min was 88%. Moreover, at optimum condition, the rate of mineralization was obtained 52%. Results comparison for prepared catalyst under light and dark condition indicated that the as-made catalyst is photocatalytic.
Conclusion: The as-prepared catalyst can be activated as a photocatalyst under LED light and proxymonosulfate for removal of organic pollutants.
 

Samira Sheikhi, Hassan Aslani, Reza Dehghanzadeh, Ammar Maryamabadi,
Volume 15, Issue 1 (4-2022)
Abstract

Background and Objective: Chlorpyrifos (CPF), an organophosphate pesticide, has been widely used in the agricultural industry and may cause environmental damage. The present study aimed to evaluate the potential application of Fe(VI) and Fe(VI)/PMS processes for oxidation of CPF in water after pretreatment with ferric chloride coagulant.
Materials and Methods: This study was performed in two phases including coagulation and flocculation process and advanced oxidation process (AOP). In the first phase, the coagulation process was performed for turbidity removal by ferric chloride (FeCl3). In this phase, using a central composite design (CCD) with R software, the combined effect of four variables including initial turbidity, initial pH, coagulant dose and contact time was investigated. The supernatant from this process was transferred to the next phase for further analysis. In the AOP phase, the effect of Fe(VI) and Fe(VI)/PMS oxidants were investigated separately.
Results: In the first phase (coagulation and flocculation), FeCl3 showed the highest efficiency (95.79%) at alkaline pH (pH=8). In the next phase (AOP), the results showed that the degradation efficiency of Fe(VI)/PMS process was higher compared to sole Fe(VI) process at all pHs. Also, by examining the reaction kinetics, it was found that after the coagulation process by FeCl3, the removal rate in the Fe(VI)/PMS process is 1.5 times higher than the Fe(VI) process.
Conclusion: Due to the high removal efficiency and higher degradation rate of Fe(VI)/PMS process, this technique can be used as a relatively effective method in removing chlorpyrifos from aqueous solution.
 


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb