Search published articles


Showing 2 results for Phosphorous

M Khodadadi, M.t Samadi, A.r Rahmani, R Maleki, A Allahresani, R Shahidi,
Volume 2, Issue 4 (3-2010)
Abstract

Backgrounds and Objectives: Water contamination by pesticides is considered as an environmentalproblem today. In terms of agricultural development and diversity of plant pests, the use of pesticides has been increasing. Hamedan province has a suitable agricultural condition, it has enjoyed significant development in this respect. Among all the cities of Hamedan province, Hamedan city has the highest rank in tiller crops. Therefore, yearly use of pesticides is increasing in this area which could be a serious threat to water resources of the city. The aim of this survey was determinaton of Organophosphorous and Carbamat pesticides residue in drinking water resources of Hamadan in 2007.
Materials and Methods: In this survey, 126 water samples were collected from 7 drinking water resources of Hamedan during 12 consecutive months in 2007. for determination of these pesticides,two methods (solid- phase extraction and Liquid-Liquid extraction) were adopted .and samples were analyzed by means of HPLC and GC/MS applying standard methods.
Results: Final results showed that the most concentration of Chlorpyrifos and Carbaryl pesticides were found to be about 3.85 ppb (part per billion) and 1.8 ppb in spring and June respectively the maximum concentration of Diazinon was about 36.5ppb in October (autumn).The minimum concentration of the three pesticides was detected in winter. According to the statistical test Two - Way ANOWA there were significant differences among pesticides concentrations in the water samples in different seasons (p<0.05) . However, there wasn't a significant difference in pesticides concentrations in surface and ground water samples(p>0.05).
Conclusion: Different studies have shown that pesticides residue concentration in water samples have a relationship with the amount of pesticides used in an area, physical and chemical refractory properties of pesticides and environmental conditions. Thus, using resistant pollutants such as pesticides will be a serious threat to health of water consumers if they are not properly controlled.


Y Azimzadeh, N Najafi, A Reyhanitabar, Sh Oustan,
Volume 10, Issue 1 (6-2017)
Abstract

Background and Objective: Phosphorus (P), as one of the agricultural, industrial and urban wastewater pollutants, plays an important role in eutrophication of surface waters. Use of cationic sorbents for removal of anions including phosphate from aqueous environments is a well-known and effective method. Meanwhile, layered double hydroxides (LDHs) are known as effective anion exchange sorbents. In this study, the efficiency of Mg-Al layered double hydroxide (Mg-Al-LDH) for P removal from aqueous solutions was investigated.

Methods and Materials: The Mg-Al layered double hydroxide (Mg-Al-LDH) was synthesized by co-precipitation method and used for removing of P from aqueous solutions. The kinetics and equilibrium studies of phosphate adsorption by Mg-Al-LDH were performed using a batch experiment at different contact times, initial phosphate concentrations, pH values, ionic strengths and doses of sorbent.

Results: The results of the kinetics experiments showed that sorption of P with LDH reached equilibrium after 30 min. The highest correlation coefficient was obtained for the pseudo-second order model, indicated that chemical sorption controlled the rate of phosphate sorption by LDH. The results showed that the sorption experiments data were in good agreement with Langmuir model and the maximum adsorption capacity predicted by this model was 37.83 mg P/g LDH.

Conclusion: The current study revealed that P adsorption by LDH was increased by increasing contact time and concentration of LDH, but decreased by increasing initial concentration of P, pH and ionic strength. The optimum conditions for phosphate anion adsorption by Mg-Al-LDH were determined as P initial concentration of 20 mg/L, contact time of 120 min, pH of 3.0, sorbent dose of 10 g/L and ionic strength of 0.03 mol/L.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb