B Mortazavi, B Barikbin, Gh.r Moussavi,
Volume 3, Issue 3 (10-2010)
Abstract
Backgrounds and Objectives: Geological situation and/or anthropogenic contamination contain an increased concentration of ions such as hexavalent chromium as well as some other dissolved components such as sulfate in the upper of the establishedMCLs (50µg/L). In this paper, simultaneous removal of Cr (VI) and sulfate from water was investigated using nanofiltration as a promising method for reaching drinking water standards.
Materials and Methods: For varying pressure, pH , anion and cation solution effect, Sulfate and Cr (VI) concentration which have chosen were levels found in drinking water sources (Cr=0.1- 0.5mg/L) and (SO4-2= 100-800mg/L).Experiments were performed using NaCl, Na2SO4,K2 Cr2O7and anhydrous CrCl3. 6H2O which prepared with de mineralized water on procedure detailed in standard methods. All salts were purchased from Merck Corporation with purity over 99'.
Results: The results for hexavalent chromium experiments showed that when the concentration decreases, the chromate anions were given a better retention to 4 bars (96'). But when the concentration increases, concentration polarization led to increased removal of Cr (VI) (98'). For Cr (III) the influences of the ionic strength as well as the concentrations were strongly dependant on rejection but operating pressure were found weak. In addition, with increasing total dissolved solids, perfect rejection of chromium was seen. The effect of pH showed that better retention was obtained at natural and basic pH.
Conclusion: This study indicates that the nature of anions and cations, driven pressure and pH have significant effect on nano filtration operation. Research findings show that it seems nano filtration is a very good promising method of simultaneous removal of Cr (VI) and sulfate from water.
M Abtahi, K Naddafi, A.r Mesdaghinia, K Yaghmaeian, R Nabizadeh, N Jaafarzadeh, N Rastkari, R Saeedi, Sh Nazmara,
Volume 7, Issue 4 (1-2015)
Abstract
Background and objectives: Dichloromethane (DCM) is one of the hazardous contaminants of the environment, especially ambient air that threatens human health at both acute and chronic exposures. In this study, the performance of a pilot-scale hybrid bubble column/biofilter (HBCB) bioreactor was studied for the removal of DCM from waste gas streams at steady state. Materials and methods: The experiments were conducted in four stages with relatively constant concentrations of DCM (approximately 240 ppm) and variable empty bed residence time (EBRT) of 50, 100, 150 and 200 s. In addition to determining DCM removal rate and efficiency, quality parameters of mixed liquor of the bubble column bioreactor were studied and kinetic of biofiltration was analyzed. Results: The average DCM removal efficiency of the HBCB bioreactor at EBRT of 200 and 150 s were 79 and 71% respectively. However, further reduction of EBRT resulted in significantly decreased DCM removal efficiency, so that at EBRT of 50 s, the DCM removal efficiency decreased to 32%. In addition, the EBRT reduction from 200 s to 50 s through increasing DCM loading rate resulted in increasing DCM removal rate from 12.1 to 19.6 g/m3.h. The results of kinetic analysis showed that the kinetic data of biofiltration were in the best fitness with the first order rate equation (R2>0.99 and &epsilon%<2.2) and the DCM removal rate constant was determined 0.0114 s-1. The mixed liquor characterization indicated that the daily adjustment of pH and EC was sufficient to prevent any limitation in the performance of the HBCB bioreactor. Conclusion: This study indicated that the DCM removal rate and efficiency of the HBCB bioreactor were relatively high and the HBCB bioreactor had reliable performance during the variable operational conditions.