Search published articles


Showing 2 results for Sirjan

Mohsen Pourkhosravani, Fatemeh Jamshidi Gohari, Nasrin Sayari,
Volume 16, Issue 2 (9-2023)
Abstract

Background and Objective: This research tries to analyze the spatial distribution and trend of arsenic level changes in the underground water resources of the Sirjan basin, and also to evaluate and analyze the factors affecting the concentration of this element in these water resources.
Materials and Methods: Sampling of underground water sources in the study area was done by systematic-random method and arsenic concentration was done by ICP-MS method in the laboratory. Also, to evaluate the factors affecting the concentration of arsenic in the underground water resources of Sirjan bathe sin, the method of land systems analysis was used.
Results: The results of the research show that the amount of arsenic in all samples is higher than the Guidelines provided by the World Health Organization so the amount of this element in the underground water sources of the study area varies between 30 and 390 µg/L. Samples No. 9, 13, and 16, which are located in the deepest parts of the basin, have the highest amount of arsenic. For this reason, the durability of water in this part of the basin increases. This reduces the intensity of the current. As a result, according to the cumulative effect law, this process can lead to an increase in arsenic concentration.        
Conclusion: The evaluation of changes in the concentration of arsenic in the underground water resources of the study area indicates that the concentration of this element had a high increasing trend. According to the results, the location of the studied area in the center of hydrothermal and geothermal processes (copper mineralization belt in Iran), the cumulative effect, and the effect of pH on the absorption and desorption of arsenic are among the most important factors affecting the increase of arsenic in the underground water resources of Sirjan Basin.
 

Faezeh Sadeghi, Sakine Shekoohiyan, Mohsen Heidari,
Volume 17, Issue 2 (9-2024)
Abstract

Background and Objective: The Goharzamin iron mine in Sirjan has the largest iron ore reserves in the Gol Gohar area. This study aimed to assess the life cycle of iron ore extraction from this mine using the Life Cycle Assessment (LCA) method due to the extensive activities in the area and the lack of comprehensive studies.
Materials and Methods:  The LCA evaluated the impacts of iron ore extraction from the Goharzamin mine on human health, ecosystem quality, and resource depletion. The boundary system included the drilling and blasting processes. Following the cradle-to-gate model and an attributional approach, the production of 1 ton of iron ore was considered a functional unit. Impact and damage assessment were conducted using SimaPro software and the ReCiPE method at mid and end-point levels.
Results: The findings revealed that transportation by trucks with a capacity exceeding 20 tons accounted for the highest environmental burden in all categories (51.1%), particularly in overburden removal. The detrimental impacts of transportation on ionizing radiation (human health), land use, and freshwater eutrophication potentials (ecosystem quality) exceeded 95%. Carbon-14 emissions, agricultural land occupation, and BOD5 and COD releases resulting from iron ore extraction were identified as the key pollutants in these impact categories. The average damage to human health, ecosystem quality, and resource depletion was found to be 89.8%, 5.5%, and 4.6%, respectively.
Conclusion: To mitigate the negative impacts of transportation, it is advisable to enhance environmental sustainability by utilizing trucks that adhere to Euro 5 standards or higher, as well as exploring the use of renewable energies.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb