Search published articles


Showing 2 results for Steel Complex

Mohammad Sadegh Hassanvand, Ayoub Torkian, Mohammad Reza Sahebnasagh, Kazem Naddafi, Mohammad Kazem Moayyedi,
Volume 5, Issue 3 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Wind-induced particulate air pollution from iron ore piles can causes environmental and economic problems for steel industries. In this experimental study, the effectiveness of various additives in reducing particulate air pollution from iron ore piles was investigated in a laboratory wind tunnel.
Materials and Methods:  The experimental set up consisted of a prismatic pile and a wind tunnel. Four different wind speeds of 4.3, 5, 7 and 11 m/s was used in the study  Municipal water, quick lime (2%), seawater, treated industrial wastewater and Polylatice (0.25%) were used as additives to stabilize the upper layer of the pile.
Results: Emission factors for non-stabilized (without additive) piles at 4.3, 5, 7 and 11 m /s wind speeds were 46.7, 73.2, 1025.4 and 13768.7 g/m2, respectively. Stabilized piles with 2.6, 2.7, 2.8, 2.7 and 2.8 percent additive (moisture content of the upper layer of the pile) for municipal water, Polylattice (0.25%), treated industrial wastewater, seawater and quick lime (2%) indicated a decrease of 99.4%, 100%, 99.3%, 99.5% and 99.5% particulate emission reduction, respectively.
Conclusions: Proper selection and use of additives on iron piles has the potential for decreasing  more than 99% of the wind-induced particulate emissions. Operational factors such as covered area, spray frequency, pile geometry, seasonal adjustments related to ambient temperature and humidity, wind speed and operator training need to be an integral part of the pollutant reduction program.              


N Sistani, M Moeinaddini, N Khorasani, Ah Hamidian, Ms Ali-Taleshi, R Azimi Yancheshmeh,
Volume 10, Issue 1 (6-2017)
Abstract

Background and Objective: Urban and industrial development has increased concentration of heavy metals in the environment. The goal of this study was to assess the impact of Kerman steel complex on their surrounding soil by heavy metals.

Materials and Methods: This study was a snapshot and its type was descriptive-analytical research. Heavy metals contents from 60 soil samples (top soil, 0-15 cm) near two Steel Complexes were analyzed using flame atomic absorption spectroscopy (AAS). Source identification and pollution degree indices including enrichment factor (EF) and its percentage (EF%), geo-accumulation index (Igeo), contamination factor (Cf), degree of contamination (Cd) and modified degree of contamination (mCd) were calculated to assess the soil pollution level. 

Results: The average concentration of Ni, Zn, Fe, Pb, Cr and Cd were 9.98, 54.38, 15063.33, 20.86, 3.54 and 0.038 mg/kg, respectively. The order of average EF for heavy metals was Pb > Zn> Cd> Fe> Ni> Cr. Cf index also showed that 90% of the samples were moderately to significantly polluted with lead element. The results of EF% indicated that Fe (68.18%) had higher enrichment than others. The average values of Cd and mCd indices were 2.90 and 0.48, respectively, that showed low degree of pollution.

Conclusion: In this study, Pb and Cd concentration were related with activities of the steel complexes and other metals had a combination of natural and anthropogenic emission sources. The steel complexes should plan to reduce pollutants emission to their environment.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb