Search published articles


Showing 3 results for Textile Waste

Akbar Eslami, Mohammad Reza Massoudinejad, Farshid Ghanbari, Mahsa Moradi,
Volume 5, Issue 3 (10-2012)
Abstract

Background and Objectives: Electro-Fenton process has been widely applied for dye removal from aqueous solution lately. Fenton's reagent is formed in the electrolysis medium through the simultaneous electrochemical reduction of O2 and Fe3+ to H2O2 and Fe2+ respectively on the cathode surface. In this paper, COD reduction potential and decolorization of real textile wastewater were evaluated by electrochemically generated Fenton reagent process. This wastewater mainly contains non-biodegradable acidic dyes, which are highly resistant against conventional oxidizing agents.
Materials and Methods: Electro-Fenton process was carried out in an open and undivided cell in order to evaluate the removal of color and COD from real textile wastewater using graphite felt (cathode) and Pt plate (anode) at room temperature. The effects of current density, flow rate of air, electrolysis time, initial pH, and ferrous ion concentration were investigated for real textile wastewater.
Results: The results showed that the optimal experimental conditions obtained in electrochemical studies were as follows: current density=4.8 mA cm-2, pH=3, flow rate of air=1.5L/min, Fe2+=3mM and reaction time=160 min. Under these conditions, COD removal and decolorization achieved were 63% and 77.2% respectively.
Conclusion: According to the results achieved, electro-Fenton process can be used as a pretreatment for degradation of colored wastewater and refractory pollutants. Moreover, this feasible technology improves biodegradability of the textile wastewater.


Samaneh Ghodrati, Gholamreza Moussavi,
Volume 7, Issue 2 (10-2014)
Abstract

Background and objectives: Electrocoagulation (EC) as an electrochemical method was developed to overcome the drawbacks of conventional decolorization technologies and is an attractive alternative for the treatment of textile dyes. This study was aimed at the optimization of the EC process for decolorization and COD removal of a real textile wastewater using response surface methodology (RSM). RSM is an important branch of experimental design and a critical technology in developing new processes, optimizing their performance, and improving design and formulation of a new products. Materials and Methods: In this study, a bench scale EC reactor was designed, constructed, and studied for treatment of a textile wastewater. The main operational variables were current intensity, residence time, initial pH, and electrode materials as independent variables color and COD removal were considered as dependent variables. The experimental runs were designed using selected variables using Design Expert 7.0 software and the process was optimized for decolorization and COD removal using the response surface method. Results: The optimal operational conditions in the EC process for attaining the maximum decolorization and COD removal were current density of 0.97 A, initial pH of 4.04, residence time of 48 min, and Fe electrode. The desirability factor for Fe electrode was 1, while decolorization and COD removal were predicted 76.3 and 75.6% respectively, which was confirmed by the experimental results. Conclusion: The experimental results indicated that the EC process is an efficient and promising process for the decolorization and COD removal of textile effluents. Under the optimized conditions, the experimental values had a good correlation with the predicted ones, indicating suitability of the model and the success of the RSM in optimizing the conditions of EC process in treating the textile wastewater with maximum removals of color and COD under selected conditions of independent variables.


Pantea Omrani,
Volume 14, Issue 4 (3-2022)
Abstract

Background and Objective: Nowadays, in metropolitan areas, principled and hygienic waste management is very important. Recycling is one of the most appropriate options in waste management. Hereof, the present study was aimed to investigate the possibility of using textile waste fibers in the manufacture of Medium Density Fiberboard (MDF).
Materials and Methods: This experimental study was performed on lab-scale. Fabric waste was prepared by separation method at source from a clothing manufacturer in Tehran and converted into fibers. Test boards were made with weight percentage of mixing textile waste fibers to industrial fibers at three levels of 0:100, 10:90 and 15:85, respectively, 10% urea-formaldehyde adhesive, with 16 mm thickness and 0.7 g/cm3 density by hot press. Then, properties of the boards were measured including bending strength, modulus of elasticity, internal bond, hardness, water absorption and thickness swelling. The results were analyzed with ANOVA test.
Results: The results of ANOVA showed that the effect of textile waste fibers on the bending strength, modulus of elasticity and swelling thickness of 2 and 24 hours of boards made at 5% probability level was significant. Additionally, the highest values of physical and mechanical properties are related to made boards with 10% of textile waste fibers.
Conclusion: The results showed that it is possible to make MDF with textile waste fibers. The use of wastes such as fabrics in the production of new functional products can be considered as one of the strategies to reduce waste and thus to maintain human health and the environment.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb