Showing 52 results for Treatment
G Moussavi, A Jamal, H Asilian,
Volume 1, Issue 2 (3-2009)
Abstract
Background and Objectives: A conventional treatment to stabilize the excess activated sludge is the aerobic digestion process but due to long aeration time, it requires large equipments as well as high investment cost. Because of high oxidation potential of ozone, sludge ozonation enhances stabilization rate and reduces sludge treatment equipment size and cost. Therefore, in this study, the combination of pretreatment with ozone and aerobic digestion processes were investigated.
Materials and Methods: The experimental set-up consisted of an ozone generator and ozonation reactor with the total volume of 2 L. Removal percentages of TSS, VS, total and soluble COD, HPC, fecal coliform and settable solids were measured in integrated process compared to the single ones.
Results: The results of this research indicated that the aerobic digestion of waste activated sludge during 10 days could reduce 38% of volatile solids and thus obtaining the EPA standard. Also, the results of combined ozonation and aerobic digestion revealed that the pre-ozonation at 0.25 g O3/g TS or 0.5 g O3/g TS with 6 or 3 days aeration, respectively, could achieve 38% reduction in VS and hence the requirement set by EPA. Therefore, integration of pre-ozonation with aerobic digestion can significantly reduce the digestion time to attain the standards.
Conclusion: The sludge pre-ozonation with low dose of ozone due to solids disintegration can enhance the efficiency of aerobic digestion in waste activated sludge stabilization, and consequently decrease size of equipments, air requirement, investment and probably operation cost.
M Aghanejad, A.r Mesdaginia, F Vaezi,
Volume 2, Issue 1 (7-2009)
Abstract
Backgrounds and Objectives: Now a days modified activated sludge ways are used for standard removing nutrient substances from waste water that is named Enhanced biological phosphorus removal One of the most suitable ways is Anoxic-Oxic(A/O) process. The goal of this research is investigation and solving existing problems of Khoy power plant(P.P) waste water treatment plant(WWTP)and optimizing of phosphorus removal in it.
Materials and Methods: This research is done full scale in this treatment plant. The treatment plant was operating with extended aeration process, and some problems had, so in the first stage with in investigation of total efficiency, problems and their reasons determined. In the second stage after operational modifications existing problems was solved and real efficiency of treatment plant particularly for phosphorus(P) removal determined. In the third stage changes, system converted to A/O process and new system was tested with Changing parameters like food/microorganism(F/M), return sludge ratio(RAS)and sludge retention time(SRT)
Risults: In the first stage the most important problems were over concentration of BOD,TSS, and P in effluent of treatment plant and overgrows of alga observed in parts of treatment plant and effluent receiving conduit. The main reason of high concentration of P was considered releasing of sludge. In the second stage operating condition modification efficiency of P removal increased from 50to 62 percent. In the end of third stage value of P removal reached to %82 and the most suitable of anoxic contact time was determined 3to4 hours, SRT terry day and F/M ratio o.12,that the most effective change has been the decrease of SRT to three days.
Conclusion: Adjusting of operating factors like SRT,RAS, sludge processing way in WWTP can increase P removal in them with in total efficiency remaining, such as in this case it was %12. In waste water treatment particularly for P removal the A/O process is suitable so in this project its effect on P removal efficiency has been %20.
N Jaafarzadeh Haghighifard, M.m Mehrabani Ardekani, R Nabizadeh Nodehi, A.r Yazdanbakhsh,
Volume 2, Issue 1 (7-2009)
Abstract
Backgrounds and Objectives: in recent years, mobile bed biological reactors have been used progressively for municipal and industrial wastewaters treatment. Dissented experiment is a trial that significant changes will accrue for influent variables in the process, and generally used for identification of the effective factors and optimization of the process. The scope of this study was determination of the optimized conditions for the MBBR process by using of Taguchi method.
Materials and Methods: Reactor start up was done by using of the recycled activated sludge from Ahwaz wastewater treatment plant. After that and passing the acclimation period, with hydraulic residence time equal to 9 hours matched for 1000, 2000 and 3000 mg/l based on COD respectively, for optimization determination of the acclimated microbial growth, the variables change (pH, nitrogen source, chemical oxygen demand and salinity) were determined in 9 steps, and all of the results were analyzed by Qualitek -4 (w32b).
Results:In this study, organic load removal based on COD was 97% and best optimized condition for MBBR were (inf. COD=1000 mg/l, pH= 8, salinity = 5% and the Nitrogen source= NH4CL)
Conclusion: Based on our finding, we may conclude that Taguchi method is on of the appropriate procedure in determination the optimized condition for increasing removal efficiency of MBBR.
M Farrokhi, M Kouti, Gh.r Mousavi, A Takdastan,
Volume 2, Issue 2 (9-2009)
Abstract
Backgrounds and Objectives: Leachate is one of the landfill products and also a wastewaterbearing the most advers effects on the environment. Biological methods are usually employed for treatment of young leachate (1-2 years) wich is of high concentration of organic compounds with low molecular weight. However these methods are not approprate for mature leachate (5-10years) due to having high rate of compounds with molecular weight and the presence of materials resistant to biodegradation and toxic compounds . Advanced oxidation process such as Fenton reagent used in treatment or biodegrability improvement of strong wastewater. In the present study the degrability improvement of mature leachate through oxidation fenton process in bench scale and in batch reactorhas been investigated.
Materials and Methods: The samples have been taken from Ahwaz landfill and factors such as initial COD and BOD, pH, BOD5/COD were studies as degradability, the amount of Hydrogen Peroxide, Fe(II), optimal reaction time and optimal pH.
Results:The highest amount of COD removal was observed in PH=3-3.5 and 90 minutes of reaction time. H2O2=29700mg/land Fe2+=16500 mg/l in [Fe2+]/[H2O2]=1/14.8 molarity ratio were obtained as optimal amounts BOD5/COD was equal to 0.38.
Conclusion: This study indicates that Fenton oxidation enhances the biodegradability of leachate.
N Jaafarzadeh Haghighi Fard, A.r Talaiekhozani, M.r Talaiekhozani, S Jorfi,
Volume 2, Issue 4 (3-2010)
Abstract
Backgrounds and Objectives:Propylene glycol is applied in many industries as raw material and can be released to the environment through wastewater of such industries. The biological treatment of solutions containing high concentration of propylene glycol is difficult and some problems can be observed during this process. The main objective of this study was the investigation of electrochemical degradation of propylene glycol and the parameters influencing on improving removal efficiency.
Materials and Methods: In this study the degradation of propylene glycol was made by passing an electrical current though the synthetic wastewater containing propylene glycol. In order to investigate this process several types of electrode with applied voltage ranging between 5 to 50 V was used. Due to the effect of NaCl concentration on removal efficiency which was mentioned in the literature, the experiment was performed for different NaCl concentrations.
Results: In optimum condition, the maximum removal efficiency of propylene glycol (based onCOD) was obtained equal to 90%. The results showed that rising applied voltage, NaCl concentrationand retention time increase the removal efficiency. The optimum retention time was obtained equalto 50 min. The maximum removal was obtained when aluminum electrode was used. It can beattributed to the production of coagulant material such as Al+3 during this process.
Conclusion: The results revealed that this process can be useful for treating the industrial wastewatercontaining propylene glycol.
H. Asilian, G.r Moussavi, M. Mahmoudi,
Volume 3, Issue 1 (4-2010)
Abstract
Backgrounds and Objectives:Much attention has been recently paid on using waste materials as adsorbents for removal of contaminants from water and wastewater. A new low cost waste was examined for its capacity to adsorb RR198, an azo reactive model dye, from an aqueous solution.
Materials andMethods: The waste was dried, powdered and characterized before being used as an adsorbent. The effects of pH (3-10), adsorbent dose (0.2-3 g), dye concentration and contact time on the adsorption efficiency were investigated. Equilibrium study data were modeled using Langmuir and Freundlich models.
Results: The characterization analysis indicated that itwas composedmainly of ferric hydroxide. The powder had a BET and average pore size of 107 m2/g and 4.5 nm, respectively. The results showed that dye removal was highest at a solution pH of 7 to 8 and a powder dose of 2 g/L. The RR198 removal percentage decreased from 100& to 43& at 140 min contact time when the concentration of dye was increased from 25 mg/L to 100 mg/L, at optimum pH and dosage. The Langmuir equation provided the best fit for the experimental data. The maximum adsorption capacity was calculated to be 34.4 mg/g.
Conclusion: According to the obtained results, the water coagulation waste sludge appears to be a suitable low cost and effcient adsorbent for removing reactive azo dyes from waste streams.
M.m Amin, B Jaberian, M Saadani, R Hadian, G.r Bonyadi Nejad, A Khodabakhshi,
Volume 3, Issue 2 (7-2010)
Abstract
Backgrounds and Objectives: Powdered Activated$ carbon is known as a suitable absorbent for organic materials. The aim of this research is evaluation of Powdered Activated-Carbon (PAC) efficiency in removal of Dissolved Organic Carbon (DOC) in water treatment in Isfahan.
Materials and Methods : The increase of PAC for DOC reduction has done in three paths in the Isfahan water treatment plant (WTP). These paths including: 1) Intake up to entrance of WTP 2) Intake to exit ofWTP 3) Between entrance and exit of waterworks. The paths were simulated by the Jar test system. Then DOC and UV254 absorption were analyzed and SUVA parameter for samples and activated-carbon adsorption isotherm was calculated.
Results: The injected PAC doses of 20,40,60,80 and 100 mg/l caused decreasing in DOC and UV254 absorption in every sample in all paths. The average of this decrease, from intake to WTP.s exit (second path) was the greatest 69.8± 3.9%and the commonWTP process had capability of removing 35% of DOC. The first path also showed that PAC can reduce 33± 2% DOC of raw water by itself. Activated-carbon absorption results were adhered from Freundlich adsorption isotherm.
Conclusion: In the third path therewas lessDOCremoval efficiency than exceptedwhen Activated- Carbon injected in rapid mixed basin with coagulant. Powdered activated carbon porosity reduction due to effect of coagulant can be the reason for this issue.Also according to different paths, the point of intake is more suitable for powdered activated carbon addition.
M Malakootian, N Jafarzadeh Haghighi Fard, M Ahmadian, M Loloei,
Volume 3, Issue 2 (7-2010)
Abstract
Backgrounds and Objectives: Untreated leachate is discharging into the environment in the many countries of worldwide. Leachate treatment methods have not been unified so far due to variable composition of leachate. Moreover, the uncontrolled management of leachate, cause many environmental dissociates. The aims of this study apply the Fenton process to decrease the pollutants of Kerman leachate.
Materials and Methods: Rawleachatewas obtained fromcompactor vehicles used for the collection of Kerman city solid waste, before final disposal. In order to removal of biodegradable organic compounds, a rector was built based on characteristics of landfill Kerman city and raw leachate underwent anaerobic treatment in this pilot. In the next stage, treated leachate in the pilot, was affected by Fenton process. The optimized parameters in Fenton process including pH, reaction time and dosage of H2O2 and Fe2+ were also studied.
Results: The results showed that TSS, BOD5 and COD decrease to 62*, 96*and 89*, respectively, after 60 days treatment in the pilot. BOD5/COD ratio also decreased from 0.6 to 0.2 in anaerobic treated leachate. In optimum condition (pH=3, reaction time=75 min, Fe2+=1400 mg/L and H2O2 = 2500 mg/L) maximum COD removal was 78 * by Fenton process. BOD5/COD ratio increased from 0.2 to 0.51 which showed an increase in biodegradability of leachate as a result of Fenton process.
Conclusion: anaerobic biologically treatment followed by Fenton processes could be assumed as an efficient process that could improved the leachate quality. Biological treatment to reduce leachate pollution alone was not enough. The most important Fenton process advantage is reduction of refractory and toxic leachate compounds and increasing leachate.s biodegradability.
A.r. Talaie Khozani, N Jafarzadeh Haghighi Fard, M.r Talaie Khozani, M. Beheshti,
Volume 3, Issue 2 (7-2010)
Abstract
Backgrounds and Objectives: Oil pollution can be generated as a result of spillage, leakage, discharge, exploration, production, refining, transport and storage of crude oil and fuels in the environment. Consequently, many researchers have developed and studied the chemical, physical and biological methods to degrade crude oil. Among them, the biological treatments are the most interesting as they are simple and economical methods. The aim of this study was to determine biokinetic coefficients of crude oil degradation by pseudomonas aerogenusa. This microorganism was isolated in our previous work.
Materials and Methods: In this study the bio-kinetic coefficients of crude oil biodegradation were evaluated. Pseudomonas aerogenusa bacteria which had been isolated from the soil sample taken from a gas station in our previous work were used in this study. This microorganism was cultured in the liquid medium containing crude oil as sole carbon source. Finally with determining the amount of microorganisms and crude oil concentration during biodegradation process, the bio-kinetic coefficients based on modified Monod equation were calculated.
Results: bio-kinetic coefficients obtained from laboratory studies are vital factors in industrial applications. As a result, the bio-kinetic study was performed to find bio-kinetic coefficients for biodegradation of crude oil using the isolated bacteria. The results showed that ,Y, k and were equal 0.107 , 0.882 , 9.39 and 169.3 respectively.
Coculusion:Our results showed that pseudomonas aerogenusa is usable for treatment of oily wastewaters in the full scale facility. Results of this study indicated bio kinetics confections.
F Kord Mostafapour, E Bazrafshan, H Kamani,
Volume 3, Issue 3 (10-2010)
Abstract
Backgrounds and Objectives:Arsenic is one of the most toxic and dangerous elements in drinking water that with increase in its application in agriculture, development of applications in agriculture, livestock, medicine, industry and other cases its entry to water resources and environment is much easier.Arsenic is a poisonous, cumulative substance and inhibitor of SH group enzymes and various studies revealed a significant correlation between high concentrations of arsenic in drinking water and liver cancer, nasal cavity cancer, lungs, skin, bladder and kidney cancer in men and women and prostate and liver in men. The aim of this was survey of arsenic removed from water using dissolved air floatation mechanism.
Materials and Methods: At present study in first step for determination best conditions of arsenic removal by dissolved air floatation method, optimum amount of coagulants determined and then synthetic solution of arsenic (50, 100 and 200 µg/L) prepared using sodium arsenate. In third step arsenic removal efficiency under various variables such as arsenic concentration, flocculation and floatation time and saturation pressure were analyzed. Finally residual arsenic concentration was determined by the silver diethyl dithiocarbamate method.
Results:Effect of optimum condition on arsenic removal efficiency at various initial concentration 50, 100 and 200 µg/Lshowed that the best coagulant for removal of arsenic is polyaluminumchloride. Also maximum efficiency (99.4%) was obtained in initial concentration equal 200 µg/L.
Conclusion: It can be concluded that dissolved air floatation method with poly aluminum chloride as coagulant have high efficiency for arsenic removal even at high concentrations and therefore this method can be used for removal of arsenic from water as a suitable and safe option.
H Banejad, V Yazdani, A.r Rahmani, S Mohajeri, E Olyaie,
Volume 3, Issue 3 (10-2010)
Abstract
Backgrounds and Objective: In arid and semi-arid regions of the world, urban runoff as a source of water restoration and is considered valuable. Wastewater treatment, while preserving the environment, it can be considered as water source. The aim of this study to evaluate the possibility of using powder grain Peregrina in wastewater treatment in comparing with Alum and PloyAluminum Chloride (PAC).
Materials and Methods: Flocculation and coagulation tests were done by Jar test. Wastewater quality parameters were measured according to standard method.
Results: Studies have been showed that in optimum Peregrina concentration, efficiency of turbidity reduction, total hardness, calcium hardness, magnesium hardness, total E. Coli are 95.11, 38, 55.5, 46.6, 97 and 97 percent respectively. It is noted that turbidity reducing directly related with coli form reduction. As, with increasing turbidity reduction, coliform reduction is increased. The most reduction of E. coli with combination of Alum, Ploy Aluminum Chloride and Peregrina was 100 percent. In optimum concentration of Alum, Ploy Aluminum Chloride and Peregrina, the quality of treated wastewater would be in the range of environmental standards. Therefore, treated wastewater can be entering to surface water and reuse as irrigation water.
Conclusion: The results derived from this study showed that the treated wastewater can be use in a variety of irrigation except sprinkler irrigation due to burn the leaves of plants. (high electrical conductivity).Also, the low cost of seed Peregrina and good performance in the refining operations, it is suggested that Peregrina as a replacement for poly aluminum chloride and an alum to be used for wastewater treatment.
J Derayat, A Almasi, K Sharafi, H Meskini, A Dargahi,
Volume 4, Issue 2 (9-2011)
Abstract
Background and Objectives: Microbial quality, particularly parasitic characteristics in terms of effluent reuse in agriculture is one of the most important indices. The aim of this study is determination of removal efficiency of Kermanshah wastewater treatment(conventional activated sludge) and Gilangharb wastewater treatment plants (stabilization ponds) for cyst and parasitic eggs.
Material and Methods: In this study research samples were taken once in five days from both inlet and outlet of wastewater Plants within a period of five months. The identification and counting of cyst and parasitic eggs were carried out by Mac master slide according to Bailenger method.
Results: The findings shows that mean of parasitic eggs and protozoan cysts in effluent of Kermanshah wastewater treatment plant were 0.99±0.42 and 0.90±0.25 per liter respectively, indeed removal efficiency for parasitic eggs and cysts are %98.42±3 and %97.5±4.5 respectively, but, any parasitic eggs and protozoan cysts in Gilangharb wastewater treatment plant was not observed and removal efficiency of these tow parameters was %100. Ascaris lumbricoides eggs had most number in influent and effluent of both plants.
Conclusion: As results show, removal efficiency for cysts and parasitic eggs in both above mentioned are desirable, and the quality of effluent treatment plant of both the rate of nematode eggs Anglbrg index (number of nematode eggs: 1 " number per liter) is consistent.
A.h Andalib, H Ganjidoust, B Ayati, A Khodadadi,
Volume 4, Issue 2 (9-2011)
Abstract
Background and Objectives:Yazd province is located in the central desert part of Iran in which water scarcity was one of the most important problems. This has been recently solved to some extent, due to the approved channel project of water transferring from Isfahan to Yazd. Chlorination is usually used in the last stage of water treatment for disinfection in the networks, treatment plants, storages and channel stations. The possibility of carcinogen lateral composites formation is expected by tri-halo-methanes (THMs) due to the reactions occurs between the natural organic materials and free chlorine available in water. Based on the established standard by the country, the permissible limit of THMs in water is 200 mg/L. In this research, in addition to the amount of THMs and their distribution in Yazd water transferring channel and the city water network system, the important parameters and their correlations with THMs formation were discussed.
Materials and Methods: In a year of sampling period, the concentrations of THMs including the four major components of chloroform, bromoform, bromo di-chloro methane and di-bromo chloro methane during all seasons were measured using gas chromatograph and analyzed. This was done for 11 stations including Zayande-rood Basin River and Isfahan water treatment plant up to Yazd Shehneh storage, stations and inline equalization tanks and also five regions of Yazd city network.
Results: According to the results, the maximum rate of THMs (51.14 mg/L) during the sampling period in summer for Yazd city network and in ancient context of Jamea Mosque district was found. In addition, the minimum concentration of THMs was 1.60 mg/L in winter for the domestic network of the city which was related to Azad Shahr district. The Average total amount of THMs during sampling periods in all stations was 12.26 mg/L.
Conclusion: SPSS and Excel softwares were used to analyze the research data in the descriptive and inferential manner. Both statistical methods (Simple correlation coefficient, Pearson and Spearman correlation test)) with 5% significant level were considered for data analysis. The results indicated that no significant difference existed between these parameters and national and international standard scales. These rates were generally desirable and lower than standard limit which indicates acceptable operation in the treatment system and storages in the channel line of Isfahan to Yazd. Furthermore, it was obtained that there is a correlation between THMs rates and effective parameters in producing confidential values such as 95%and 99%for the residue chlorine and heat respectively. Finally the distribution and diffusion plan of THMs in transferring line and civic network of Yazd were drawn.
M Mahdavi, S Naseri, M Yunesian, A.h Mahvi, M Alimohaadi,
Volume 4, Issue 3 (10-2011)
Abstract
Background and Objectives: Nowadays, most countries of the world have shortage of water due to many reasons such as population growth, rising of living standards, indiscriminate water use, and so on. Besides, in absence of adequate water resources, desalination of brackish and saline waters have been used to supply potable water. Freezing process is one of the methods which can be used to desalinate saline waters.The aim of this study was to survey freezing process to produce potable water from saline water of Persian Gulf shores.
Materials and Methods: This study was conducted in lab-scale by using indirect contact freezing. Three samples of 50 liter were provided from Bushehr shores. The implemented process steps were freezing (crystallization), separation of crystals, surface washing, and thawing. Freezing of the samples (each in 0.5 liter containers) were performed by a refrigerator at -20°C and 0.1KW/h energy consumption.
Results: The removal efficiencies of TDS in the first, second, and third samples by first freezing process were 56, 56, and 51 percent, respectively. Moreover, the removal efficiencies by EC were 42, 44, and 40 percent, respectively. Meanwhile, the removal efficiencies of TDS in first, second, and third samples by second freezing process observed 69, 69, and 68 percent, respectively. Moreover, the removal efficiencies by EC were 61, 60, and 63 percent, respectively. Also, the removal efficiencies of TDS in first, second, and third samples by third freezing process were 72, 73, and 72 percent, respectively. Moreover, the removal efficiencies by EC were 77, 78, and 77 percent, respectively. The production of the potable water by this method was 15-20 percent of the entry water.
Conclusions: According to the obtained results, potable water was obtained after third freezing of the saline water. Meanwhile, TDS of the produced water was less than maximum allowed concentration of Iranian standards.
M Gholami, A Sabzali, E Dehghani Fard, R Mirzaei, D Motalebi,
Volume 4, Issue 3 (10-2011)
Abstract
Background and Objectives: One of the complete treatment processes for industrial and municipal wastewater treatment is membrane bioreactor process which has dominant potential in process and operation sections. This study was conducted to compare the performance of extended aeration activated sludge (EAAS) with submerged membrane bioreactor (SMBR) systems in the treatment of strength wastewater, in the same condition.
Materials and Methods: The initial activated sludge was brought from the Plascokar Saipa wastewater plant. The Plexiglas reactor with effective volume of 758 L was separated by a baffle into the aeration and secondary sedimentation parts with effective volumes of 433 L and 325 L, respectively. The chemical oxygen demand (COD) concentration of the influent wastewater of the EAAS and SMBR systems were between 500-2700 and 500-5000 mg/L, respectively.
Results: Results showed that the SMBR system produced a much better quality effluent than EAAS system in terms of COD, biochemical oxygen demand (BOD5), total suspended solids (TSS) and ammonium. By increasing the COD concentration, the concentration of mixed liquor suspended solids (MLSS) and the removal efficiency of organic matter in the SMBR system, were increased regularly, however the removal efficiency of COD in the EAAS system was irregular.
Conclusion: The average BOD5/COD ratio of effluent in the EAAS and SMBR systems were 0.708±0.18 and 0.537±0.106, respectively. These show that the organic matters in the effluent of the SMBR system was less degradable and thereupon more biological treatment was achieved. Nitrification process was completely done in the SMBR system while the EAAS system could not achieve to complete nitrification.
Z Kheradpisheh, H Movahedian Atar, M Salehii Najafabadi,
Volume 4, Issue 4 (3-2012)
Abstract
Background and Objectives: Cyanide is a highly toxic compound which is Normally found in numerous industries, such as electroplating wastewater. Release of this compounds in to the Enviroment has a lot health hazards.The Purpose of this study is to Determine the efficiency of electrochemical oxidation method for Cyanide removal from industrial wastewaters
Materials and Methods: This study conducted in a pilot system experimentally .In this study the effect of pH, voltage and operation time on total cyanide removal from industrial wastewaters by Electrochemical Oxidation was investigated by applying a Stainless Steel as a Anode and copper as a cathode .
Results: The average percentage removal of cyanide was about 88 with SD=2.43. The optimal condition obtained at voltage of 9V and pH=13 and The operation time of 90 minutes.The volume of sludge which formed in this condition was about 20 percent of a one liter pilot reactor.
Conclusion: the results statistically confirmed the significant relationship between
input and cyanide concentration removal efficiency (p< 0.05), and confirmed The this confirmed The relation between cyanide & cyanat oxidation and hydroxyl ions consumption 1:2.( L.Szpyruowicz). therefore the best pH is 12.5-13.5 by Considering the need of alkaline environment to remove cyanide.
M Malakootian, M. M Amin, H Jaafari Mansourian, N Jaafarzadeh,
Volume 4, Issue 4 (3-2012)
Abstract
Background and Objectives: Microbial fuel cells are the electrochemical exchangers that convert the microbial reduced power, generated via the metabolism of organic substrate, to electrical energy. The aim of this study is to find out the rate of produced electricity and also treatment rate of simulated wastewater of food industries using dual chamber microbial fuel cell (MFC) without mediator and catalyst.
Materials and Methods: MFC used in this study was consisted of two compartments including anaerobic anode chamber containing simulated food industries wastewater as synthetic substrate and aerobic cathode chamber containing phosphate buffer, respectively. These two chambers were separated by proton exchange membrane made of Nafion. Produced voltage and current intensity were measured using a digital ohm meter and the amount of electricity was calculated by Ohm's law. Effluent from the anode compartment was tested for COD, BOD5, NH3, P, TSS, VSS, SO42- and alkalinity in accordance with the Standard Methods.
Results: In this study, maximum current intensity and power production at anode surface in the OLR of 0.79 Kg/m3.d were measured as 1.71 mA and 140 mW/m2, respectively. The maximum voltage of 0.422 V was obtained in the OLR of 0.36 Kg/m3.d. The greatest columbic efficiency of the system was 15% in the OLR of 0.18 Kg/m3.d. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO42- and alkalinity, were obtained 78, 72, 66, 7, 56, 49, 26 and 40%, respectively.
Conclusion: The findings showed that the MFC can be used as a new technology to produce electricity from renewable organic materials and for the treatment of different municipal and industrial wastewaters such as food industries.
Ensieh Taheri, Mahdi Hajian Nejad, Mohammad Mahdi Amin, Hossein Farrokhzadeh, Maryam Hatamzadeh, Marzieh Vahid Dastjerdi,
Volume 5, Issue 1 (4-2012)
Abstract
AR-SA
MicrosoftInternetExplorer4
Background and Objectives: Aerobic sludge granulation is an
advanced phenomenonin which its mechanisms have not been understood.
Granulation can be a promising and novel biological wastewater treatment
technology to eliminate organic and inorganic materials in future. High
salinity is a parameter which leads to plasmolisatian and reduction of the cell
activity. This could be a problem for biological treatment of the saline
wastewater. Aerobic granule was formed and investigated during this study.
Materials and Methods:
This study is an intervention study on the treatment of wastewater with
500-10000 mg/L concentration of NaCl by sequencing batch reactor. Asynthesized
wastewater including nutrient required for microorganism's growth was prepared.
Input and output pH and EC were measured. Range of pH and DO varied between
7-8, and 2-5 mg/L, respectively. SEM technology was used to identify graduals
properties.
Results: In terms of color, granules divided
into two groups of light brown and black. Granule ranged in 3-7mm with the
sediment velocity of 0.9-1.35 m/s and density of 32-60 g/L.Properties of
granules were varied. Filamentous bacteria and fungi were dominant in some
granules. However non filamentous bacteria were dominant in others. EDX
analysis indicated the presence of Ca and PO
4.
Conclusion: Granules
with non filamentous bacterial were compact and settled faster. Presence of
different concentrations of salinity leaded to plasmolysis of the bacterial
cells and increased concentrations of EPS
in the system as a result of
which granulation accelerated
.
Mohammad Malakootian, Hassan Izanloo, Maryam Messerghany, Mohammad Mahdi Emamjomeh,
Volume 5, Issue 2 (10-2012)
Abstract
MicrosoftInternetExplorer4
Background and
Objectives: leachate from municipal solid waste
landfill is a strong sewage having hazardous toxic substances. It should
be
treated
by
choosing a
simple,
economical,
and eco-friendly method. The aim of this study is reduction of COD
from the
Qom City landfill leachate using electrocoagulation process.
Materials
and Methods: The experimental study
was carried out at bench scale using a batch reactor during 2010. We used a Plexiglas reactor having 0.7 liter
capacity, containing nine plate aluminum electrodes connected to a DC power supply (10-60V, 1-5A). Samples were
collected in the middle of cell at regular (every 10 minutes) time intervals.
The concentration of COD was determined using
a COD analyzer. The effects of different parameters
including current density (52.08, 69.44 mA/cm
2), electrolyte time (10, 20,30,40,50 and 60 min), and voltage range
(10, 20, 30, 40, 50 and 60 volt) were investigated.
Results: For a voltage of 60 V and electrolysis time 60 min, the COD removal
efficiency was increased from 48.7% for 52.08
mA/cm
2 to 77.4% for 69.44
mA/cm
2. The highest TSS removal
efficiency was obtained at the largest current input when the voltage and
electrolysis time were kept at 60V and 60 min respectively.
Conclusion: The results showed that the highest COD removal
efficiency (77.4%) was obtained when the current density was 69.44 Ma/cm
2 and the voltage and electrolysis time were kept at 60V and 60 min respectively. Power consumption for this removal level was measured to
be 431.26 kWh per kg COD removal. The results obtained revealed that the electrocoagulation
technology is an effective treatment process for landfill leachate.
!mso]>
ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>
Edris Bazrafshan, Ferdos Kord Mostafapour, Mahdi Farzadkia, Kamaledin Ownagh, Hossein Jaafari Mansurian,
Volume 5, Issue 3 (10-2012)
Abstract
Background and Objectives: Slaughterhouse wastewater contains various and high amounts of organic
matter (e.g., proteins, blood, fat, and lard). In order to produce an effluent
suitable for stream discharge, chemical coagulation and electrocoagulation
techniques have been particularly explored at the laboratory pilot scale for
organic compounds removal from slaughterhouse effluent. The purpose of this
work was to investigate the feasibility of treating cattle-slaughterhouse
wastewater by combined chemical coagulation and electrocoagulation process to
achieve the required standards.
Materials and Methods:
At present study, slaughterhouse wastewater after initial analysis was tested
for survey of coagulation process using Poly aluminum chloride (PAC) at various
doses (25-100 mg/L). Then we measured the concentrations of wastewater
pollutants (BOD5, COD, TKN, TSS and fecal Coliforms). Later, we transferred the
effluent to the electrocoagulation unit and we evaluated the removal efficiency
of pollutants in the range 10 to 40 volts of electric potential during 60 min.
Results: It was found
that the efficiency of chemical coagulation process using poly-aluminum
chloride (PAC) as coagulant increases with increasing doses (from 25 to 100
mg/L) we achieved maximum removal efficiency during the chemical coagulation
for parameters of BOD5, COD, TSS, and TKN at 100 mg/L of PAC equivalent to
44.78%, 58.52%, 59.9%, and 39.58% respectively. Moreover, the results showed
that with increasing the electric potential and reaction time, the yield
increases linearly so that maximum removal efficiency at a dose of 100 mg/L
PAC, an electrical potential of 40 volts and a reaction time of 60 minutes for
the parameters BOD5, COD, TSS, and TKN was 99.18% 99.25%, 82.55%,
and 93.97% respectively.
Conclusion: The
experiments demonstrated the effectiveness of combined chemical coagulation and
electrocoagulation processes for pollutants removal from the slaughterhouse
wastewaters. Consequently, this combined process can produce effluent
compliance with the effluent discharge standards.