Search published articles


Showing 8 results for Zanjan

Z Farahmand Kia, M.r Mehrasbi, M.s Sekhawatju, A.sh Hasanalizadeh, Z Ramezanzadeh,
Volume 2, Issue 4 (3-2010)
Abstract

Backgrounds and Objectives : Heavy metals in dust can enter to the human body through ingestion andinhalation. They can pollute the water and soil resources via atmospheric precipitation and accumulate in the plants tissue and enter human body by water and food. The aim of this study was measurement of the heavy metals in wet and dry atmospheric precipitation and effects of pollution sources at the ground surface on the concentration of heavy metals in the atmospheric precipitations.
Materials and Methods: In this study the zanjan city was divided into 5 zones and wet and dry precipitations were collected in autumn, winter and spring (2008- 2009) from zones. The concentrations of Pb, Cd, Cr and Zn the collected precipitations were determined by Atomic Absorption spectroscopy method.
Results: The averages of concentrations of Pb, Cd, Cr and Zn were 0.082, 0.286, 0.018, and 0.009 (mg/m 2.d)respectively. The correlation coefficients between Pb-Zn was 0.8 (P<0.01) and for Cr-Cd, Cd-Pb, and Cr-Pb were 0.89, 0.58 and 0.61 respectively.
Conclusion: The results showed that the industrial sources of heavy metals play the main role in concentration of heavy metals in wet and dry atmospheric precipitation in Zanjan.The correlation coefficients showed that the lead and zinc result from a common source. This source can be the lead and zinc factories locating around the city. The measurement of heavy metals in atmospheric precipitation shows the effects of anthropogenic sources in air quality. The heavy metals concentration in atmospheric precipitation can be use as air pollution index.


Mahran Mohammadian Fazli , Jalil Nassiri , Ramin Nabizadeh, Mohammad Reza Mehrasbi,
Volume 6, Issue 1 (5-2013)
Abstract

Backgrounds and Objectives: Medical waste management is one of the important issues in solid waste managment in each community. This research was carried out to study the quantity, quality and the management practices of solid wastes of hospitals in Zanjan City in 2011. Materials and Methods: In the present study, the hospital wastes were categoried and weighted into four main categories. Waste management pattern was studied based on a checklist extracted from national guidelines. Then, hospitals were ranked from very poor to excellent classes. For data analysis, Excel soft ware was used. Results: Waste generation rate was on average 2.402± 0.163 Kg/bed.day in the studied hospitals. The generation rate of domestic waste, infectious waste, sharp wastes, and chemical - pharmacological waste was 1.432±0.059, 0.926±0.096, 0.029±0.0055, and 0.015±0.002 kg/day.bed respectively. The status of the waste management practices was determined as average. Conclusion: Waste generation rate in the hospitals of Zanjan was lower compared with the expected average value in other cities (e.g. 2.71 Kg/bed.day in Tehran). The percentage of medical waste in Zanjan hospitals was 34, which is higher than W.H.O. recommendations. Therefore, it is strongly recommended to reform and monitor certain solid waste management practices in order to reduce health and environmental issues.
F Majidi, Y Khosravi,
Volume 9, Issue 1 (6-2016)
Abstract

Background and Objective: The aim of  noise control in a community is to improve its management in the community, because the traffic noise can affect neighboring residential areas. Well-planned noise management can eliminate this major and harmful component issue, which is one of the stresses of urban life on human health. However, before planning to decrease urban noise, it is necessary to determine the very noisy areas in a given city. Therefore, the objective of this study was to measure the main noise indices at the noisy areas of Zanjan City, Iran.

Materials and Methods: This study was performed in the central area of Zanjan City, with heavy traffic. For this purpose, the equivalent sound level (Leq), the day-night sound level (Ldn), the day-evening-night sound level (Lden), the noise pollution level (NP) and the traffic noise index (TNI) were measured in 19 stations in the first half (winter and spring) of 2012. The measurements were conducted in the main streets of this area as recommended by EPA guidelines and finally the results obtained were mapped using the ArcGIS (Ver. 10.2) software. 

Results: the noise maps in GIS showed clearly the variations of Leq, Ldn, and Lden indices in the study field area. Moreover, it was found that the hourly variations of Leq, Ldn and Lden in stations are completely function of population movements and therefore traffic loads in the Zanjan city center. In addition, the extent of violation of traffic noise level from the ambient noise standard was estimated by Lden at 100% stations (greater than 55 dB). The TNI values at 67  and 100% stations  were more than 74 dB (A), but  in the evenings the TNI values at  100% of stations  were more than 74 dB (A). The NP values at 78% sampling stations were more than 80 dB  implying  traffic noise was annoying in the most stations and times.

Conclusion: Using noise maps, NP and TNI indices can help intelligent traffic control planning, because the noise maps can be used to represent the movement of people in different times and parts of a city.   


L Tabande, M Taheri,
Volume 9, Issue 1 (6-2016)
Abstract

Background and Objective: The contamination of soils and plants with heavy metals is a serious and growing problem. The present study aimed to determine the concentration of heavy metals in soil and some agricultural products and the probability of risks due to their consumption.

Materials and Methods: This cross-sectional descriptive study was performed using random sampling at harvest time in 2014 on 205 samples of vegetable crops (Leek, chard, parsley, watermelon, melon, tomatoes, cucumber, potatoes, onion, garlic, radish, green peas, and broad bean) and 129 samples of soils under cultivation. Concentrations of Cu, Zn, Cd, and Pb in soil and plant samples were determined by an atomic absorption instrument and the data was analyzed using SPSS software.

Results: There were significant differences between the mean concentrations of Pb, Cu, and Zn for different vegetables (P<0.001), but no significant difference was observed for Cd. The highest mean levels of Pb, Cd, Cu, and Zn were detected in parsley, chard, broad bean, and leek respectively. However, there was no heavy metal pollution in the remainder of the vegetables and soil samples (with the exception of agricultural soils adjacent to the lead mine of Mahneshan area) studied. Hazard probability (HQ) of each element for cancerous diseases was less than unit and the intake of heavy metals was lower than the Provisional Tolerable Daily Intake (PTDI).

Conclusion: The results of this study indicated that major accumulation of heavy metals was obtained in leafy vegetables. Therefore, much attention should be paid to consumption of leafy vegetables, especially vegetables grown in the surrounding industrial areas.


A Tavakoli, A Parizanganeh, Y Khosravi, P Hemmati,
Volume 10, Issue 1 (6-2017)
Abstract

Background and Objective: Radon is highly regarded because of its impacts on public health. Northern regions of Iran have a high potential for radon emissions. This research aimed to measure residential radon concentrations in Tarom country- Zanjan and to compare the results with international standards and acceptable values.

Materials and Methods: Passive diffusive samplers, Solid State Nuclear Track Detector (SSNTD), with the ability to determine background and longtime concentration, were selected for this study. A total of 30 detectors were located based on a pre-identified network in the residential buildings of Chavarzaq, Ab Bar and Gilvan for a period of three months. Then, detectors were sent to a laboratory for counting the traces.

Results: Based on the results, average radon concentrations in Chavarzaq, Ab Bar and Gilvan were 220.51, 95.25 and 119.84 Bq/m3, respectively. The average radon concentration in Tarom was about 130.57 Bq/m3. There was no meaningful relationship between radon concentration with the age of buildings or number of occupants. In comparison of the results with USEPA standards it was observed that among total samples just one of them was in the range of target level, and 15 detectors were in the range of target to action levels and the remaining samples showed high level of radon requiring corrective measures. In addition, 12 detectors showed values less than the reference level of WHO and the remaining detectors had higher values than WHO level.

Conclusion: Based on results of this research, soil analysis before construction, application of building materials resistant to leakage and regular monitoring of radon levels in region were suggested.


Mh Dehghani, Gr Jahed Khaniki, R Fallah, N Khodamoradi Vatan, L Tabande,
Volume 10, Issue 4 (3-2018)
Abstract

Background and Objective: Heavy metals are toxic and can enter the food and thus the health of people who consume these kinds of foods may be affected. The aim of this study was to investigate the concentration of heavy metals in fruits and to estimate the exposure level of heavy metals by fruit consumption.
Materials and Methods: In this descriptive cross-sectional study, 60 samples (35 samples of apple fruit and 25 apricot fruit samples) were randomly collected from gardens around Zanjan and Mahneshan city in 2016. The concentration of Pb, Cd, Zn, and Cu were determined by atomic absorption spectrometer. Statistical analysis was done with SPSS software.
Results: The average concentration of the elements in the samples was as follows: Pb (0.121 mg/kg wet weight), Cd (0.052 mg/kg wet weight), Zn (10.63 mg/kg dry weight), and Cu (4.99 mg/kg dry weight). The average lead concentration in apple and apricot was, respectively, 0.17 and 0.057 mg/kg wet weight, cadmium 0.08 and 0.003 mg/kg wet weight, zinc 9.15 and 12.7 mg/kg dry weight, Copper 4.4 and 5.583 mg/kg dry weight. Furthermore, it was found that 28.3% of the samples were contaminated with Pb, 13.3% with Cd and 3.3% with Zn. Cu contamination was not detected above permitted concentration. The concentrations of heavy metals in Zanjan were more than Mahneshan and the concentrations of Pb and Cd in the apple samples were higher than the apricot samples but the concentration of Zn and Cu in the apricot samples were higher than the apple samples.
Conclusion: Heavy metals pollution was found in samples belonging to the gardens around the factories and mines of lead and zinc. However, there is no risk of non-cancerous diseases with the use of these fruits in accordance with the national standard declared per capita.
 

Maryam Abdi, Seyed Reza Azimi Pirsaraei, Mohammad Reza Mohammadizadeh,
Volume 14, Issue 1 (5-2021)
Abstract

Background and Objective: Monitoring the amount of ultraviolet radiation from sunlight can provide a basis for assessing people's exposure, raise public awareness and warn people against this radiation. Measuring the sun's ultraviolet index over a working period is an accurate choice to achieve this goal.
Materials and Methods: In this study, the amount of solar UV index in one of the outdoor locations of Zanjan city was measured using Solarmeter model 5.6 UV index meter for one year period. Measurements were performed from 9 am to 5 pm every 30 minutes in direct sunlight in even days for one year period (2018-2019). Finally, the results were analyzed using Excel software.
Results: The highest value of the maximum daily UV index was related to July, with an average value of 11.87 ± 0.649; while, the lowest value of the maximum daily UV index obtained in January, with an average value of 2.23 ± 0.944. In most months of the year, except for late November, December, January and cloudy days, the average value of the maximum daily UV index around noon exceeds the UV index alert threshold set by the World Health Organization (WHO). Even for the safe time period during spring and summer, the average UV index can exceed the UV index warning threshold.
Conclusion: Determining the intensity of the sun's hourly UV radiation is important and necessary to increase the peoples’ and workers’ awareness working in the open environment, as well as to plan for protective measures in any place, especially in Zanjan.

Azadeh Tavakoli, Arezoo Tavakoli, Masoumeh Mohammadi,
Volume 14, Issue 3 (12-2021)
Abstract

Background and Objective: Indoor air pollution in hospitals could be a serious health threat to the patients, medical staff, and visitors. In previous studies, the importance of paying attention to air quality during the Coronavirus pandemic has been proven. In this study, the effect of visiters' presence under normal conditions and the imposition of hospital restrictions at the time of pandemic on air quality and environmental parameters in a hospital has been evaluated.
Materials and Methods: Air sampling was carried out in Valiasr Hospital of Zanjan in two periods, September 2019 (morning and visiting hours) and during the pandemic in October 2020. All wards inside and the outside of the hospital were examined for air pollutants (PM2.5, PM10, NO2, SO2, CO2) and environmental parameters (temperature, humidity, and sound levels).
Results: The results of this study showed that except for the sound levels, other pollutants are at an acceptable level. Particulate matter of different sizes in the air of the hospital has a correlation, often with an external source, and has been imported through construction activitie;. However, nitrogen dioxide concentration is dependent on urban traffic. Visiting hours are associated with an increase in the concentration of particulate matter and the sound levels. The pandemic had a positive effect in some wards, on some parameters and often improved the air quality due to the imposing strict health protocols.
Conclusion: This study showed that natural ventilation has a direct effect on the air quality inside of the hospital. It is also suggested that in wards where patients are sensitive or in the need of intensive care, restrictions on commuting and visitation be applied.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb