Showing 5 results for Zinc Oxide
K Naddafi, M.r Zare, M Younesian, M Alimohammadi, N Rastkari, N Mousavi,
Volume 4, Issue 2 (9-2011)
Abstract
Background and Objectives: This study was conducted to investigate the toxicity of Titanium Oxide (TiO2) and Zinc Oxide (ZnO) nanoparticles as two of most widely used nanoparticles. The result of this study can help to designing environmental standard and legislations for nanoparticles.
Materials and Methods: Different concentrations of nano ZnO and TiO2 nanoparticles were added to nutrient Agar culture media. Then, definite numbers of Escherichia coli and Staphylococcus aureus bacteria were added to culture media and inhibition of these bacteria growth was measured in comparison to controls. Obtained data were analyzed to determine nanoparticles' EC50 and NOEC (No Observed Effect Concentration) using SPSS ver.16 and Probit standard test.
Results: 24-hours EC50 of nano ZnO using E. coli and S. aureus determined to be 5.47 mg/L and 2.38 mg/L respectively. In addition, 24-hours EC50 of nano TiO2 using E. coli and S. aureus determined to be 5366 mg/L and 3471 mg/L respectively. In the case of ZnO nanoparticles, no observed effect concentration determined to be 1.15 and 3.28 mg/L for E. coli and S. aureus respectively and in the case of TiO2 nanoparticles no observed effect level determined to be 1937 and 1184 mg/L for E. coli and S. aureus respectively.
Conclusion: This study showed that acute toxicity of nano ZnO is by far more than that of nano TiO2. Regarding the EPA acute toxicity criteria, nano ZnO is categorized as moderately toxic and nano TiO2 is categorized as practically non toxic. Hence, regarding the acute toxicity, in recommending exposure criteria and environmental disposal standards, compared to nano TiO2, nano ZnO requires more attention.
H Irvani, H Shojaee - Farah Abady, M Shahryari, M Nakhaei Pour,
Volume 10, Issue 2 (9-2017)
Abstract
Background and Objective: Styrene monomer is a volatile organic compound that is used in the various industries. Due to the hazardous effects of this chemical substance on the environment and humans, control and elimination of this vapour is necessary. Therefore, the aim of this study was to remove the styrene vapors from air flow using photocatalytic activity of zinc oxide immobilized on ZSM-5 zeolite.
Materials and Methods: In this experimental study, the fabricated catalysts were characterized using analysis of BET, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Dynamic Concentrator System were used to generate styrene vapors at a certain concentration and flow, and then removal efficiency of the styrene vapors was investigated using UV/ZnO and UV/ZSM-5/ZnO.
Results: The results of XRD analysis and SEM images showed that produced zinc oxide had nano dimensions. In addition, these nanoparticles was successfully stabilized on ZSM-5 zeolite. The results of the photocatalytic removal showed that ZnO and ZSM-5/ZnO catalysts at the concentrations of 50 ppm eliminated the styrene vapor 14% and 37%, respectively.
Conclusion: Findings of this study showed that stabilization of zinc oxide nanoparticles on ZSM-5 zeolite had an ssynergistic effect on the photocatalytic degradation of styrene. According to this finding, the use of adsorption-photocatalyst hybrid systems can be an appropriate technique to remove styrene vapors and other similar pollutants.
F Akhlaghian, H Azadi,
Volume 10, Issue 2 (9-2017)
Abstract
Background and Objective: All around the worlds, wastewater containing dye pollutants are considered serious problem. Rhodamine B dye which is used in textile, leather, drug, and cosmetic industries exert carcinogenic and strong toxic effects. The aim of this research was to remove of Rhodamine B dye by nanowires of zinc oxide doped with lanthanum.
Materials and Methods: In this work, nanowire of zinc oxide doped with lanthanum was synthesized by hydrothermal method. The obtained photocatalyst was characterized by XRF, XRD, and SEM method. Effects of batch process variables such as pH, initial concentration of Rhodamine B, and photocatalyst dose were investigated. The kinetics of the reaction was also studied.
Results: The SEM images showed a hexagonal structure of ZnO, and La/ZnO nanowires. XRD results also confirmed the formation of ZnO with wurtzite hexagonal structure in both samples (ZnO and La/ZnO). The kinetics studies showed that the reaction was a pseudo first order. The apparent constants of ZnO and 2%La/ZnO nanowires were 0.0045 min-1 and 0.0074 min-1; respectively. In a batch experiment, the degradation yield of 99.8% was obtained at operating conditions of 1.25 g/L of 2% La/ZnO photocatalyst, initial concentration of Rhodamine B solution 4.78 mg/L, and pH=9 under ultra violet irradiation for 4 h.
Conclusion: The nanowire of La/ZnO with an optimum load of lanthanum has a better photocatalytic activity than nanowire of ZnO for degradation of Rhodamine B in aqueous solution.
Maryam Razavi Mehr, Mohammad Hossein Fekri, Fatemeh Mohammadi Shad ,
Volume 14, Issue 2 (9-2021)
Abstract
Background and Objective: Due to the water shortages and the presence of industrial pollutants in water resources, wastewater treatment, especially colored wastewater, is essential. The aim of this study was to treat wastewater containing Methylene Blue dye using activated carbon nanocomposite/zinc oxide nanoparticles (ZnO/AC) obtained from canola oil waste by green method.
Materials and Methods: In the present study, the effect of different parameters (pH, Methylene Blue concentration, adsorbent amount, temperature and contact time) on the adsorption of Methylene Blue was investigated. Design of Experiment 7 software (Response Surface Method (RSM)) was used to evaluate the influence of various parameters on Methylene Blue removal.
Results: The results of the predicted experiments showed that the highest adsorption of Methylene Blue is at pH = 10, temperature 70 °C, contact time of 50 min, initial adsorption concentration of 10 mg/ L and adsorbent amount of 0.05 g. Under optimal conditions, ZnO/AC adsorbent was able to remove 98.22% of Methylene Blue from the aqueous medium.
Conclusion: Appropriate to the high potential of ZnO/AC nanocomposite in the removal of Methylene Blue pigment, it can be a good candidate for the removal of dye contaminants and wastewater treatment of textile factories.
Mehrab Aghazadeh, Amirhesam Hasani, Mehdi Borghei,
Volume 15, Issue 3 (12-2022)
Abstract
Background and Objective: Based on its unique characteristics, oil industry wastewater must be treated before discharging into the environment. The study aimed to optimize the catalytic sonopraxone process in the treatment of petroleum wastewater using a statistical method.
Materials and Methods: The synthesis of Iron Oxide-Zinc Oxide was carried out by air oxidation and layer-by-layer self-assembly method. XRD, SEM, EDAX, FT-IR, BET, DRS, VSM and TGA techniques were used to investigate the structure. In this study, applied CCD method optimization of pH parameters, reaction time, ozone gas concentration, hydrogen peroxide concentration and catalyst amount in the process. In optimal conditions, BOD5 and TPH removal values, reaction kinetics and synergistic effect of mechanisms were studied. COD, TPH and BOD5 were measured by spectrophotometer (DR6000), GC-FID and incubator, respectively.
Results: The results indicated that the Fe3O4@ZnO structure is well formed. A quadratic model was proposed to model the process based on the correlation coefficient. Based on ANOVA analysis and p and f indices, the proposed model was reported to be significant. Optimum conditions include pH 6.4, ozone concentration 1.3 mg/L.min, hydrogen peroxide concentration 2.5 mL/L, reaction time 51 min and catalyst amount equal to 0.64 g/L. In these conditions, the amount of COD reduction was 82.3 and 70% theoretically and experimentally, respectively. Also, in optimal conditions, BOD5 and TPH removal rates were 90.5% and 85.8%, respectively. The kinetics of the process follows the kinetics of the first order (R2=0.98) and the presence of different mechanisms together causes a synergistic effect and increases the efficiency of the process.
Conclusion: This process can improve the quality of oil effluent based on COD, BOD5, and TPH removal.