Search published articles


Showing 2 results for Zno Nanoparticles

Emad Dehghani Fard, Ahmad Jonidi Jafari, Roshanak Rezae Kalantari, Mitra Gholami, Ali Esrafili,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Aniline has been used in different processes of chemical industries, however due to its side effects on the environment, several methods have been considered for its removal. In this study, we evaluated the performance of photocatalytic process using ZnO nanoparticles (nZnO) and ultraviolet (UV) irradiation for removal of Aniline from a synthetic effluent.
Materials and Methods: A 5L photocatalytic reactor made from Plexiglas, which the UV lamp (20w) installed in the center of that (inside a quartz jacket), was designed and nZnO (0.2-0.5 g/l) was being added into synthetic effluent with Aniline concentration of 250 ppm. After retention times of 30, 60, and 90 min, samples were centrifuged and supernatant was filtered using a 0.2 µ PTFE filter. The liquid-liquid method and Gas Chromatography instrument was used for extraction and analysis respectively.
Results: Results showed that the photocatalytic process of nZnO+UV could effectively remove Aniline from effluent. Increasing trend in the removal efficiency of Aniline using nZnO = 0.5 g/l was slower in comparison with other nZnO concentrations and the ANOVA analysis shows no significant difference between removal efficiency of Aniline in different concentrations of nZnO. The most removal efficiency of Aniline (76.3%) was observed in alkaline pH, retention time of 90 min and nZnO of 0.5 g/l.
Conclusion: It could be concluded that the photocatalytic process of nZnO+UV could be suitable technique for Aniline removal from effluents.


S Abbasi,
Volume 9, Issue 3 (12-2016)
Abstract

Background and Objective: Owing to the extended usage in the safekeeping of environments, the photocatalytic materials have been widely applied. The purpose of the present study was to investigate the photocatalytic activity of ZnO and SnO2 nanoparticles in removal of methyl orange from aqueous media.

Materials and Methods: ZnO and SnO2 nanoparticles were synthesized through sol-gel and chemical precipitation respectively. Methyl orange was selected as model pollutant. The effect of weight fraction on the removal of pollutant was investigated in the range of 0.25, 0.5, and 1 weight percent. Meanwhile, for investigating the effect of radiation time, the suspension containing pollutant and nanoparticles was irradiated. The obtained results were analyzed by MSTATC, Ver 1.42 software and Duncan’s multiple range test.

Results: The analysis of variance results of removal efficiency of methyl orange showed that in the suspension involving ZnO and SnO2, radiation time, weight fraction and the combined effect of them have a significant effect on the removal of methyl orange at 5% level of probability. Meanwhile, by increasing irradiation time from 5 to 25 min, the removal efficiency in suspensions containing ZnO and SnO2 reached 97.42 and 65.55% respectively. Investigation on the effect of concentration on the removal of methyl orange shows that the removal of methyl orange increases with respect to the weight fraction.

Conclusion: According to the obtained results, it was observed that the photocatalytic activity of ZnO is higher than that of SnO2. Therefore, the application of ZnO is more effective for removal of methyl orange from aqueous media.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb