Search published articles


Showing 3 results for Formaldehyde

Amir Bagheri, Gholamreza Moussavi, Ali Khavanin,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives: Formaldehyde is a toxic substance and harmful to human beings and the environmental health. Therefore, the effluents containing formaldehyde have to be efficiently treated before discharging into the environment. This study was aimed at investigating the efficiency of Electro-Fenton (EF) Process in pre-treating industrial wastewater containing high concentrations of formaldehyde.
Materials and Methods: The effect of the important operational variables including pH, current density, H2O2 dosage, and reaction time were evaluated on the degradation of 7500 mg/L formaldehyde using batch tests. The EFP batch reactor was consisted of a cylindrical glass column with 5.20 cm in internal diameter and 34.50 cm in height. Working volume of the reactor was 500 mL.
Results: The maximum formaldehyde removal was obtained at alkaline pH of 10, H2O2 concentration of 10 mM/min, current intensity 8.5 mA/cm2, and the reaction time of 6 minute. Furthermore, aerating the EFP cell could enhance the formaldehyde removal. Complete removal of formaldehyde was obtained under the abovementioned operational conditions.
Conclusion: This study demonstrated that the EFP is capable of reducing high concentration of formaldehyde (7500 mg/l) to the level suitable for biological post-treatment.


Ahmad Reza Yazdanbakhsh, Akbar Eslami, Akram Najafi,
Volume 6, Issue 2 (9-2013)
Abstract

Background and objectives: Formaldehyde is one of the compounds widely used in various industries hence, its discharge into the effluent is unavoidable. Exposure to formaldehyde has a significant health effects. To prevent these issues, treatment of wastewater containing formaldehyde is necessary. The purpose of this study was to determine the performance of aerobic sequencing batch reactor (SBR) in removing formaldehyde from wastewater. Methods: We used a SBR having a total volume of 6.15 liters and an effective volume of 4 liters. The formaldehyde and COD removal efficiency of SBR was evaluated by applying loading rate of 0.031 to 0.156 kgCOD/m3.h. Four cycles of 6, 8, 10, and 12 hours were considered to investigate retention time effect onto the reactor efficiency. Results: Acclimation of microorganism with formaldehyde was achieved after about 30 days. We found that a retention time lower than an hour is not enough for achieving an acceptable efficiency. The maximum removal efficiency (90.52% for COD and 95.32% for formaldehyde) was observed at organic loading rate of 0.031 kg COD/m3.h and 12 hour retention time. The removal efficiency decreased to 46.44% for COD and 69.12%, for formaldehyde with increasing the organic loading rate to 0.156 kg COD/m3.h. The maximum concentration of MLSS was measured 2863 mg / L at organic loading rate of 0.091 kg COD/m3.h. Conclusion: The results showed that SBR could be applied as a practical, effective, and reliable technology for treatment of wastewater containing formaldehyde.


N Rastkari, F Izadpanah ,
Volume 9, Issue 1 (6-2016)
Abstract

Background and Objective: Formaldehyde is a toxic volatile organic compound, which its removal from polluted air is essential. One of the techniques available for removing such compounds is photocatalytic degradation. The aim of this study was to investigate the photocatalytic degradation of gaseous formaldehyde on TiO2 nanoparticles coated on reduced graphene oxide

Materials and Methods: The synthesized reduced graphene oxide- TiO2 nanocomposite was characterized using SEM, EDS, and FTIR spectra. The photocatalytic activity of prepared reduced graphene oxide- TiO2 nanocomposite was investigated for degradation of gaseous toluene under different operational conditions such as different initial concentration, flow rate, and time.

Results: The photocatalytic degradation efficiency of the RGO-TiO2 nanocomposite was much higher than P25 TiO2. The photocatalytic degradation efficiency of the RGO-TiO2 nanocomposite decreased by increasing the flow rate so the flow rate is a key factor for the use of RGO-TiO2 nanocomposite as a photocatalyst. The results showed that the photocatalytic degradation rates decreased from 89 to 30% with increasing formaldehyde initial concentration from 0.1 to 1 ppm.

Conclusion: This research indicated that RGO-TiO2 nanocomposite can be effectively used as suitable photocatalyst to remove gaseous pollutants. One of the advantages of the as-prepared composite was using visible light instead of UV to activate the oxidation process.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb