Search published articles


Showing 4 results for Humic Acid

Edris Bazrafshan, Ahmad Joneidi Jaafari, Ferdos Kord Mostafapour, Hamed Biglari,
Volume 5, Issue 2 (10-2012)
Abstract

MicrosoftInternetExplorer4 Background and Objectives:  Presence of humic acids in water resources is important because it is a precursor to disinfection by-products (DBPs) and affects many treatment processes. In this study, we investigated the performance of electrocoagulation process duad with hydrogen peroxide (creating Fenton process) in removal of humic acids (HA) from aqueous environment.
Materials and Methods: The experiments were performed using a 1 L bipolar batch reactor (covered with the aluminum foil) equipped with iron electrodes and connected to electric source having electrical potential 10 V in bipolar mode. First, reactor was filled up using aqueous solution containing 20 mg/L HA. Later, several working parameters, such as initial pH (3, 5, 7, and 8), electrical conductivity produced from adding 1, 1.5, 2 and 3 g/l KCl and reaction time were studied to achieve the highest humic acid removal capacity. To follow the progress of the treatment, hydrogen peroxide (50 mg/l) was added to reactor and then samples of 10 ml were taken at 5, 15, 30, 45, and 60 min and then filtered (0.45 μ) to eliminate sludge formed during electrolysis. Finally, humic acid and iron concentration was measured using TOC analyzer and atomic absorption method respectively.
Results: Results of this study showed that the most effective removal capacities of humic acid (97.19%) could be achieved when the pH was kept 5(KCl 3g/l and reaction time 60 min). The share of Fenton and electrocoagulation process was %7.9 and %92.1 respectively. In addition, our results indicated that the removal efficiency of humic acid with increase of pH and electrical conductivity parameters decreases and increases respectively.
Conclusion: It can be concluded that the Fenton process duad with electrocoagulation process has the potential to be utilized for cost-effective removal of humic acid from aqueous environments.


Mohammad Malakootian, Laleh Ranandeh Kalankesh,
Volume 6, Issue 4 (3-2014)
Abstract

Background and Objective: Humic substances in drinking water react with chlorine and form carcinogenic compounds. Humic acid is a principal component of humic substances and its separation from surface waters is crucial. Adsorption process is among different methods for separation of humic acid from surface waters and because of its simple and economical nature it has attracted considerable attention. The aim of this research was to examine performance of silicon nanoparticles in adsorption of humic acid in water. Materials and Methods: Experimental study was conducted on both synthetic and real water samples collected from Zarrineh Rood River, Tabriz before its entrance to water treatment process. We used instantaneous sampling method.The chemical quality of crude sample and its humic acid was determined and then the influence of pH, absorbent amount, and time on the removal of humic acid was evaluated. Therefore, the optimal conditions for each of these parameters were determined. In order to get better insight into the process of adsorption, the adsorption kinetic and equilibrium isotherm were studied. We measured humic acid concentration and TOC using spectrophotometer (Shimadzu /UV-1800, Japan) at a wavelength of 254 nm and TOC analyzer (Shimadzu model TOC-VCSH) measured. SPSS software and regression were used for data analysis. Results: At pH=4, retention time of 10 minutes, adsorbent amount of 0.25 g/L, we found that the highest percentage of humic acid adsorption was 88.4 and 81.8 for synthetic and real solutions respectively. The finding revealed that the removal of humic acid follows Freundlich isotherm ( =0.8172) and the second order kinetic model ( =0.9936). Conclusion: Removal in both real and synthetic solutions was less due to the reaction of influencing factors. However, considering the high percentage of humic acid removal under optimal conditions and its comparison with other methods, the removal of humic acid using SiO2 can be considered as an efficient method.
E. Karimi Pasandideh, R. Rezaei Kalantary, S. Nasseri, A. H. Mahvi, R. Nabizadeh, A. Esrafili,
Volume 7, Issue 3 (5-2014)
Abstract

Background and Objective: The presence of natural organic materials (NOM) in water resources affects its quality (i.e. color, odor, and taste). In addition, it leads to the fouling of filters and membranes and reduces water treatment efficiency during flocculation/ coagulation. Moreover, NOM reacts with disinfectants and produces byproducts (DBPs), which are harmful to human health. Magnetic nanoparticles have been reported as effective adsorbents for the removal of pollutants from the aqueous media. In this study, we applied SiO2coating on these nanoparticles in order to enhance their stability and dispersion in aqueous media and investigated their capability in NOM adsorption from water. Materials and Methods: Iron oxide magnetic nanoparticles were prepared by co-precipitation. Then, we added Tetraethoxysilane (TEOS) to the solution in order to coat it with SiO2 . The adsorbent characteristics were determined by SEM and XRD. Then, we carried out the adsorption experiments under different pH(3-12) and contact time (5-240 min)performance conditions. The adsorption kinetic was determined with respect to different Humic acid adsorption times. Later, we determined the effect of different concentrations of adsorbent on different concentrations of Humic acid, and Langmuir and Freundlich coefficients based on the optimum conditions. Results: The morphology investigation of adsorbent showed the average size of Fe3O4/SiO2nanoparticles was 30-130 nm. The pH value of 10.5 and the contact time of 90 min at room temperature were determined as optimum conditions for removal of humic acid using Fe3O4/SiO2 nanoparticles. The maximum adsorption capacity of Fe3O4/SiO2 was192.30. The adsorption isotherm was fitted well by Langmuir model (R2>0.90) and the pseudo-second order model (R2>0.98) could better explain humic acid adsorption. Conclusion: Having high number of active surface sites, magnetic properties, easily separation using magnetic field, and its cost-effectiveness, the Fe3O4/SiO2 nanoparticles could be used as an efficient adsorbent in removal of humic acid from water.


M.s Mansoury, H Godini, Gh Shams Khorramabadi,
Volume 8, Issue 2 (8-2015)
Abstract

Background and Objective: Natural organic matters (NOM) are known as precursors to disinfection byproducts. As conventional treatment processes cannot get disinfection by-product standards, novel methods have been increasingly applied for the removal of disinfection by-products precursors. The UV/ZnO process is one of the advanced oxidation processes using photocatalytic technology. The present study aims to investigate the effect of UV/ZnO photocatalytic technology on the NOM removal from aqueous solution. Materials and methods: This study was conducted in a lab-scale batch photocatalytic reactor. The volume of reactor was 1liter and covered with UV lamps. Peristaltic pump was used for complete mixing. Humic acid is a key component of natural organic matter and it was used in this study. Each of the samples taken from the UV/ZnO process and other processes were analyzed for their UV absorbance at 254 nm by spectrophotometric. Initial concentration of Humic acid, contact time, pH, and UV irradiation were investigated. Results: The highest efficiency of the UV/ZnO photocatalytic process for removal of Humic acid from aqueous solution was achieved at initial concentration = 2 mg/L, contact time = 120 min, UV irradiation = 3950 µw/cm2, and pH=3. In this process, the removal efficiency for 2 mg/L humic acid was 100 % at 2h retention time. Conclusion: The research showed that performance of system was increased by increasing contact time and UV irradiation and was decreased by increasing HA initial concentration and pH and UV radiation with ZnO agent could not remove NOM lonely. Photocatalytic system using zinc oxide immobilized on glass have high performance to remove humic acid from aqueous solution. The UV/ZnO process was efficient and environmental friendly for natural organic matter removal.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb