Search published articles


Showing 3 results for Naerobic Digestion

M.j Zoqi, A Ghavidel,
Volume 2, Issue 2 (9-2009)
Abstract

Backgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill bioreactors, based on neural network.
Materials and Methods: In this study, two different systems were applied, to predict the methane fraction in landfill gas as a final product of anaerobic digestion, we used the leachate specifications as input parameters. In system I (C1), the leachate generated from a fresh-waste reactor was drained to recirculation tank, and recycled. In System II (C2), the leachate generated from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, and at the same time, the leachate generated from a well-decomposed refuse landfill reactor recycled to a fresh waste landfill reactor.
Results: There is very good agreement in the trends between forecasted and measured data. R valuesare 0.999 and 0.997, and the obtained Root mean square error values are 1.098 and 2.387 for training and test data, respectively
Conclusion: The proposed method can significantly predict the methane fraction in landfill gasoriginating and, consequently, neural network can be use to optimize the dimensions of a plant using biogas for energy (i.e. heat and/or electricity) recovery and monitoring system.


N Navidjouy, M Jalali, H Khorsandi, Hossein Movahedian,
Volume 7, Issue 1 (7-2014)
Abstract

Background & Objectives: Listeria bacterium resists to the sludge digestion conditions and Listeria monocytogenes is the most important of them. Sludge produced in the north Isfahan wastewater treatment plant is stabilized by anaerobic digesters and is used for fertilizing agricultural lands after drying in the sludge drying beds. Based on the importance of the subject, the objective of this study was evaluation of sludge processing units efficiency, particularly anaerobic sludge digestion for reduction or removal of Listeria. Materials and Methods: In this descriptive study, samples were collected weekly from sludge processing units 13 times in north Isfahan wastewater treatment plant according to standard methods over three months. Listeria bacteria were enumerated and isolated by triple-tube fermentation method and U.S Department of Agriculture method respectively. Isolated Listeria were confirmed by phenotypic method and then bacterial species were diagnosed differentially by biochemical carbohydrate fermentation and CAMP test. Results: Contamination of raw, stabilized and dried sludge at least to one of L. Monocytogenes, L. Innocua and L. Seeligeri species was 100, 92.3 and 53.8 percent respectively. Anaerobic sludge digesters efficiency to remove L. Monocytogenes, L. Innocua and L. Seeligeri species was determined 64.7, 39.72, and 100 percent while the efficiency of drying sludge beds for L. monocytogenes and L.innocua species removal was 73.4 and 96.68 percent respectively. Conclusion: Listeria monocytogenes is more resistant than other identified species against the sludge processing conditions. Thus, the use of sludge as fertilizer can cause the spread of this bacterium in the environment and agricultural products pollution.


S. A. Mirzaee, M.m Amin, M Sarafraz, M Heidari, M.m Ahmad Moazzam,
Volume 7, Issue 4 (1-2015)
Abstract

Background & Objectives: Disposal of pharmaceutical compounds to environment as an emerging pollutants cause concerns significantly and it is necessary to use new methods of sewage treatment for removal of these compounds. The aim of this study was to investigate the inhibition effects of metronidazole before and after using UV254/H2O2 process on specific methanogenic activity of.anaerobic biomass. Materials & Methods: Fourteen anaerobic digestion tests were carried out at batch scale before and after using UV254/H2O2 process in 500 ml reactors with 30% anaerobic biomass and 70% substrate. The liquid displacement method was used. Duration of each test was in the range of 10-17 days. Results: Cumulative Biomethane production in concentrations of 1, 5, 10, 25, 50, and 100 mg/l metronidazole was 34.04, 95.12, 100.86, 3.28, 27.88, and 6.97 ml respectively. This production was 800.73, 243.54, and 10.66 ml in concentrations of 25, 50, and 80 mg/l respectively using UV254/H2O2 process as pretreatment at 60 min retention time. Biomethane production in concentrations of 80,120, and 150 mg/l was 377.2, 380.48, and 63.14 ml respectively at 90 min retention time. Conclusion: Different concentrations of metronidazole had an inhibition effect on anaerobic digestions and therefore the efficient pretreatment method is needed to reduce this inhibition effect. The UV254/H2O2 process is an effective method for degradation and conversion of metronidazole to more biodegradable compounds for anaerobic bacteria consumption and, in turn, to increase biogasproduction in anaerobic digestions.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb