Search published articles


Showing 29 results for Sludge

M Ahmadi, H Ganjidoust, B Ayati,
Volume 1, Issue 2 (3-2009)
Abstract

Background and Objectives: Upflow Sludge Blanket Filtration (USBF) system is a modification  of the conventional activated sludge process that incorporates an anoxic zone with an upflow sludge blanket filtration clarifier in one bioreactor. It has no inherent capacity limits and is used in a wide range of applications in municipal, industrial and agricultural wastewater treatment. The main objective of this study was to evaluate the performance of a continuous USBF reactor for the treatment of sugar industrial wastewater.
Materials and Methods: Sixty liter laboratory pilot scale plant was made of plexiglass consists of   14 liter anoxic zone, 38 liter aerobic zone and 8 liter clarifier. Used molasses for raw wastewater was obtained from Varamin Sugar Company. During the study, the wastewater has been initially fed to anoxic zone of the bioreactor. It mixed with recycled activated sludge returned from the clarifier and the mixed liquor entered into aerobic zone of the bioreactor. From aeration zone, the mixed liquor passed through the sludge zone at the bottom of the clarifier which was then separated by upflow sludge blanket filtration and then the clear water discharged from the system. To complete the internal circulation loop, collected activated sludge at the bottom of the clarifier was recycled to the anoxic zone.
Results: Experimental studies indicated that average removal efficiency of COD with HRTs from 21  to 26 hours in the aerobic zone and from 8 to 10 hours in the anoxic zone were from 77 to 97 percent depended on input feed (1000 to 30000 mg/L).
Conclusion: USBF as an advanced biological process had a proper COD removal efficiency for the biological treatment of sugar industries wastewater compared to other researchers methods.


G Moussavi, A Jamal, H Asilian,
Volume 1, Issue 2 (3-2009)
Abstract

Background and Objectives: A conventional treatment to stabilize the excess activated sludge is the aerobic digestion process but due to long aeration time, it requires large equipments as well as high investment cost. Because of high oxidation potential of ozone, sludge ozonation enhances stabilization rate and reduces sludge treatment equipment size and cost. Therefore, in this study, the combination of pretreatment with ozone and aerobic digestion processes were investigated.
Materials and Methods: The experimental set-up consisted of an ozone generator and ozonation reactor with the total volume of 2 L. Removal percentages of TSS, VS, total and soluble COD, HPC, fecal coliform and settable solids were measured in integrated process compared to the single ones.
Results: The results of this research indicated that the aerobic digestion of waste activated sludge during 10 days could reduce 38% of volatile solids and thus obtaining the EPA standard. Also, the results of combined ozonation and aerobic digestion revealed that the pre-ozonation at 0.25 g O3/g TS or 0.5 g O3/g TS with 6 or 3 days aeration, respectively, could achieve 38% reduction in VS and hence the requirement set by EPA. Therefore, integration of pre-ozonation with aerobic digestion can significantly reduce the digestion time to attain the standards.
Conclusion: The sludge pre-ozonation with low dose of ozone due to solids disintegration can enhance the efficiency of aerobic digestion in waste activated sludge stabilization, and consequently decrease size of equipments, air requirement, investment and probably operation cost.


M Farzadkia, R Rezaee Kalantari, S Jorfi, A.r Talaee, G.r Moussavi,
Volume 2, Issue 1 (7-2009)
Abstract

Background and Objectives : Propylene glycol is the main compound of anti-freezing chemicals. A significant amount of propylene glycol is released to the environment after application and contaminates the soil. The main objective of this study was to determine the biological removal of propylene glycol from wastewater and its degradation in soil by the isolated bacteria from activated sludge process.
Materials and Methods: In the present study, the sludge taken from the return flow in a local activated sludge treatment system was used as the initial seed. The performance of the bioreactor in treating the wastewater was evaluated at four different retention times of 18, 12, 6 and 4 h all with the inlet COD concentration of 1000 mg/L. This phase lasted around 4 months. Then, a part of the adapted microorganisms were transported from the bioreactor to the soil which was synthetically contaminated to the propylene glycol.
Results: The average of propylene glycol removal efficiency from the wastewater in detention times of 18, 12, 8 and 4 h in steady state conditions was 98.6%, 97.1%, 86.4% and 62.2% respectively. Also, the maximum degradation in soil was found to be 97.8%.
Conclusion: According to the results obtained from this study, it appears that propylene glycol is inherently well biodegradable and can be biodegraded in liquid phase and soil after a short period of adaptation.


S Jorfi, N Jaafarzadeh Haghighifard, R Rezaei Kalantary, Y Hashempur,
Volume 2, Issue 1 (7-2009)
Abstract

Backgrounds and Objectives: Direct biodegradation of landfill leachate is too difficult because of high concentrations of COD and NH3 and also the presence of toxic compounds. The main objective of this study was to application of Strurvite precipitation as a pretreatment stage, in order to remove inhibitors of biodegradation before the batch decant activated sludge process with addition of powdered activated carbon (PAC).
Materials and Methods: Strurvite precipitated leachate was introduced to a bench scale batch decant activated sludge reactor with hydraulic retention times of 6 and 12 hour. PAC was added to aeration tank directly at the rate of 3.5 g/L.
Results:TCOD, SCOD, NH3 and P removal efficiency with addition of PAC in HRT of 6 h were 90,87, 98.3 and 94 % respectively and 96, 95, 99.2 and 98.7 5 in HRT of 12 h.
Concusion:According to obtained data from this work, it can be concluded that Strurvite precipitation before batch decant activated sludge process and simultaneous addition of PAC is promising technology for leachate treatment and can meet effluent standards for discharge to the receiving waters.


M.a Zazouli, E. Ghahramani, M. Ghorbanian Alahabad, A. Nikouie, M. Hashemi,
Volume 3, Issue 1 (4-2010)
Abstract

Backgrounds and Objectives: One of environmental outcomes in industrial towns is developing environmental pollution such as production of industrial wastewaters. These industrial wastewaters should be appropriately treated before entering to receiving waters. However we can't solve environmental anxieties by establishing of wastewater treatment plants alone but permanent and regular assessment of these treatment plants performance is necessary for achieving environmental standards. Thus, this research has been done in order to investigation of activated sludge performance in wastewater treatment of Agghala industrial town in Golestan province.
Materials and Methods: This cross-sectional study implemented in sewage treatment plant laboratory of Agghala industrial town in Golestan within 12 months at 2007. Chemical Oxygen Demand (COD) parameter determined twice in week, But Biochemical Oxygen Demand (BOD) test accomplished weekly. pH measured by pH meter daily. Experiment of total suspended solids (TSS) and total dissolved solids (TDS) carried out every 10 days. All tests accomplished according to standard method for water and wastewater examination (2005). Then data analyzed using excel 2007.
Results: The average of BOD, COD and TSS in influent was 11196.17, 1854.58, 1232.25 mg/L respectively.Maximum influent organic loading rate was related to Shahrivar andMehr months. The total average of removal efficiency for BOD, COD and TSS was calculated 99.66, 98.2, and 97.6% respectively.
Conclusion:Quality of this treatment plant effluent was according to effluent disposal standards all over year. In sum, efficiency of this treatment plant (activated sludge system) was very good ininfluent pollutant removing. However occasionally effluent was not adapted with environmental standards but these deficiencies is solvable by accurate management and supervision on flow rate and influent organic loading rate easily.


M Meschi Nezami, H Ganjidoust, N Mokhtarani, B Ayati,
Volume 3, Issue 4 (1-2011)
Abstract

Backgrounds and Objectives:Owing to the fact that the major environmental problem is production of surplus sludge in wastewater treatment plant, reducing the volume of produced sludge was objective of this research.
Materials and Methods: An anaerobic-aerobic SBR with working volume of 10 L was used to make micro-organism adapted and a polymer production reactor (PPR) with working volume of 1.5 L was used for producing polymer munisipal wastewater which contained different concentration of volatile fatty acids was consodered as the feed source (acetate and propionate) and this system was evaluated with SRT of 5, 7 and 10 days.
Results: The maximum polymer production efficiency observed within 5 days (SRT=5 days) though this efficiency was not significant in comparison with the two others time courses study. In this research the maximum polymer production efficiency at optimum condition was 25% of the sludge dry weight.
Conclusion: Experiment revealed that producing polymer from activated sludge reduced the volume of sludge and the maximum reduced sludge volume was obtained 19%.


R Fouladi Fard, A.a Ebrahimi,
Volume 3, Issue 4 (1-2011)
Abstract

Background and Objective: Nickel (II) and cadmium (II) are important in environmental pollutant. Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions because of the decrease in sludge problems, economical issues, high efficiency and compatibility with the environment.
Materials and Methods: power of wasted activated sludge have been contact with nickel (II) and cadmium (II) solutions in 0.25 and 0.75 milli molar invarious pHs and mixing pace, at 24-26 0C temperature on batch reactor system .After two hours (continuously 5-420 min in kinetic study) samples were analyzed with atomic absorption spectrophotometer.
Results:The kinetic study results show that equilibrium adsorption time for nickel (II) and cadmium
(II) reached within 2 hr, but the profile curve of cadmium (II) biosorption was smoother than nickel (II) biosorption. Both metals adsorption followed the Langmuir model and the maximum adsorption capacity (qmax) for nickel (II) and cadmium (II) was 0.195 and 0.37 milli mole per gram respectively. The increase in pH resulted in adsorption increase for both metals. For cadmium (II) at 0.25 and 0.75 mMinitial concentration there was no adsorption at pH 2 where as nickel (0.25 mM) adsorption was observed at the same pH. The optimum mixing rate for both metals was 200 rpm and this effect was more obviously in greater concentration.
Conclusion: Like othe biosorbents ,wasted activated sludge showed greater capacity for cadmium(II) biosorption than nickel (II). Cadmium (II) in modeling and biosorption characteristics study had more conformity than nickel (II).


J Derayat, A Almasi, K Sharafi, H Meskini, A Dargahi,
Volume 4, Issue 2 (9-2011)
Abstract

Background and Objectives: Microbial quality, particularly parasitic characteristics in terms of effluent reuse in agriculture is one of the most important indices. The aim of this study is determination of removal efficiency of Kermanshah wastewater treatment(conventional activated sludge) and Gilangharb wastewater treatment plants (stabilization ponds) for cyst and parasitic eggs.
Material and Methods: In this study research samples were taken once in five days from both inlet and outlet of wastewater Plants within a period of five months. The identification and counting of cyst and parasitic eggs were carried out by Mac master slide according to Bailenger method.
Results: The findings shows that mean of parasitic eggs and protozoan cysts in effluent of Kermanshah wastewater treatment plant were 0.99±0.42 and 0.90±0.25 per liter respectively, indeed removal efficiency for parasitic eggs and cysts are %98.42±3 and %97.5±4.5 respectively, but, any parasitic eggs and protozoan cysts in Gilangharb wastewater treatment plant was not observed and removal efficiency of these tow parameters was %100. Ascaris lumbricoides eggs had most number in influent and effluent of both plants.
Conclusion: As results show, removal efficiency for cysts and parasitic eggs in both above mentioned are desirable, and the quality of effluent treatment plant of both the rate of nematode eggs Anglbrg index (number of nematode eggs: 1 " number per liter) is consistent.


A Mirzaei, A Takdastan, N Alavi Bakhtiarvand,
Volume 4, Issue 3 (10-2011)
Abstract

Backgrounds and Objectives: Selection of  proper coagulants for turbidity removal and determination of effective methods to reduce coagulants dose and related costs in water treatment plants is of critical importance. The present study investigates the effect of returned sludge on improving the performance of poly-aluminum chloride (PAC) in turbidity, coliform bacteria, heterotrophic bacteria removal from drinking water during rapid mixing phase.
Materials and Methods: In order to determine the optimal returned sludge volume injected during rapid mixing with PAC for turbidity, total coliform and hetrophic bacteria, experiments were conducted based on variables such as injected silt volume (from 0 - 125 ml), and varying turbidities from 58 - 112 NTU. At the end of each JAR experiments, remaining turbidity , microbial parameters of samples were measured . Coagulant efficiency in turbidity removal and microbial parameters were determined by Covariance, Duncan analyses and graphs were drawn by MS Excel . The results statistically showed significant among variables (P<0.05).
Results: The results showed that the maximum turbidity removal efficiency of 98.92 at 30 ppm was 10 ml while the maximum turbidity removal efficiency of 98.31 at 10 ppm was 4 ml. The maximum total coliform removal efficiency  of 95.68 obtained for 10 ppm in 10 cc injected sludge volume.
Conclusion: This study shows that addition of returned sludge to flash mixing can reduce the turbidity of samples.


M Gholami, A Sabzali, E Dehghani Fard, R Mirzaei, D Motalebi,
Volume 4, Issue 3 (10-2011)
Abstract

Background and Objectives: One of the complete treatment processes for industrial and municipal wastewater treatment is membrane bioreactor process which has dominant potential in process and operation sections. This study was conducted to compare the performance of extended aeration activated sludge (EAAS) with submerged membrane bioreactor (SMBR) systems in the treatment of strength wastewater, in the same condition.
Materials and Methods: The initial activated sludge was brought from the Plascokar Saipa wastewater plant. The Plexiglas reactor with effective volume of 758 L was separated by a baffle into the aeration and secondary sedimentation parts with effective volumes of 433 L and 325 L, respectively. The chemical oxygen demand (COD) concentration of the influent wastewater of the EAAS and SMBR systems were between 500-2700 and 500-5000 mg/L, respectively.
Results: Results showed that the SMBR system produced a much better quality effluent than EAAS system in terms of COD, biochemical oxygen demand (BOD5), total suspended solids (TSS) and ammonium. By increasing the COD concentration, the concentration of mixed liquor suspended solids (MLSS) and the removal efficiency of organic matter in the SMBR system, were increased regularly, however the removal efficiency of COD in the EAAS system was irregular. 
Conclusion: The average BOD5/COD ratio of effluent in the EAAS and SMBR systems were 0.708±0.18 and 0.537±0.106, respectively. These show that the organic matters in the effluent of the SMBR system was less degradable and thereupon more biological treatment was achieved. Nitrification process was completely done in the SMBR system while the EAAS system could not achieve to complete nitrification.

 


Mahdi Kargar, Amir Hossein Mahvi,
Volume 5, Issue 1 (4-2012)
Abstract

A MicrosoftInternetExplorer4 Backgrounds and Objectives: Large quantities of sludge are produced in biological wastewater treatment. Because this sludge is highly rotten, it should be stabilized before its disposal. Aerobic and anaerobic digestion is widely considered as stabilization techniques. Because of high retention time and sludge dewatering difficulties, reduction in retention time, operation and maintenance should be given into consideration. Ultrasonic process increases the enzymatic activity, so decreases the hydrolysis time, a limiting factor in digestion process, and contributes to the decrease of the detention time. The objective of this investigation is to determine the effect of ultrasound in improving dewatering and stabilization of aerobic and anaerobic digested sludge. In addition, the impact of ultrasonic treatment on improvement of sludge dewatering and aerobic and anaerobic digestion is compared.
Materials and Methods: In this survey, samples of aerobic and anaerobic digestion were collected from local full-scale Garb Town and Tehran South wastewater treatment plant, respectively. The grab samples were collected for 4 month from July to October 2010. Total numbers of 20 samples were collected biweekly for each type of digestion. Each sample was sonicated for 15, 30, 60, and 90 min under 35 and 131 kHz frequencies separately. Total solids, volatile solids , pH, temperature , total COD, dissolved COD and settle able solids were measured. Ultrasound bath of the solution in a 300 mL glass reactor was performed as a bath reactor with power of 500 W.
Result: The results showed that the application of ultrasonic wave increased dissolved COD and temperature and decreased volatile solid, pH and settle able solids. Application of ultrasonic wave with frequency of 131 kHz decreased the VS and increased the dewatering of sludge more effective than the 35 kHz frequency and the highest performance was at 15 min of time and 131 kHz of frequency. Also sonication method showed better efficiency for anaerobic sludge samples compared to the aerobic sludge samples.                 
Conclusion: The results obtained showed that digestion and dewatering properties of sludge improved by ultrasonic application. Therefore it can be used as an alternative method for the sludge treatment.

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


N Navidjouy, M Jalali, H Khorsandi, Hossein Movahedian,
Volume 7, Issue 1 (7-2014)
Abstract

Background & Objectives: Listeria bacterium resists to the sludge digestion conditions and Listeria monocytogenes is the most important of them. Sludge produced in the north Isfahan wastewater treatment plant is stabilized by anaerobic digesters and is used for fertilizing agricultural lands after drying in the sludge drying beds. Based on the importance of the subject, the objective of this study was evaluation of sludge processing units efficiency, particularly anaerobic sludge digestion for reduction or removal of Listeria. Materials and Methods: In this descriptive study, samples were collected weekly from sludge processing units 13 times in north Isfahan wastewater treatment plant according to standard methods over three months. Listeria bacteria were enumerated and isolated by triple-tube fermentation method and U.S Department of Agriculture method respectively. Isolated Listeria were confirmed by phenotypic method and then bacterial species were diagnosed differentially by biochemical carbohydrate fermentation and CAMP test. Results: Contamination of raw, stabilized and dried sludge at least to one of L. Monocytogenes, L. Innocua and L. Seeligeri species was 100, 92.3 and 53.8 percent respectively. Anaerobic sludge digesters efficiency to remove L. Monocytogenes, L. Innocua and L. Seeligeri species was determined 64.7, 39.72, and 100 percent while the efficiency of drying sludge beds for L. monocytogenes and L.innocua species removal was 73.4 and 96.68 percent respectively. Conclusion: Listeria monocytogenes is more resistant than other identified species against the sludge processing conditions. Thus, the use of sludge as fertilizer can cause the spread of this bacterium in the environment and agricultural products pollution.


R Nabizadeh, K Naddafi, A Jonidi Jafari, M Yunesian, A Koolivand,
Volume 7, Issue 3 (5-2014)
Abstract

Background & Objectives: Remaining crude oil in storage tanks lead to accumulation of oily sludge at the bottom of the tank, which should be treated and disposed of in a suitable manner. The aim of the present study was to investigate the efficiency of chemical oxidation using H2O2 and Fenton’s reagent in removal of Total Petroleum Hydrocarbons (TPH) from bottom sludge of crude oil storage tanks. Materials & methods: In this experimental study, hydrogen peroxide and Fenton’s reagent were added to the sludge in six concentrations including 2, 5, 10, 15, 20, and 30% (w w-1) and TPH was measured for a period of 24 and 48 h of reaction time. The oxidants were added in a single and stepwise addition way, both to the pristine and saturated sludge. The elemental analysis of sludge and TPH measurement were carried out using ICP and TNRCC methods respectively. Results: The mean TPH removal of 2, 5, 10, 15, 20, and 30% oxidant concentrations were 1.55, 9.03, 23.85, 33.97, 41.23, and 53.03%, respectively. The highest removal efficiency was achieved in stepwise addition to the saturated sludge. Increasing oxidation time from 24 to 48 h had a little effect on increase in TPH removal. Moreover, the removal efficiency of H2O2 and Fenton was nearly similar. Conclusions: Mere application of chemical oxidation is not capable of complete treatment of the sludge but it is an effective process as a pre-treatment step for decreasing toxicity and increasing its biodegradability.


A Heidari, R Nabizadeh, M Alimohammadi, M Gholami, A.h Mahvi,
Volume 8, Issue 1 (8-2015)
Abstract

Background and Objectives: Reduction of released extracellular polymeric substances (EPS) during sludge dewatering is one of the main challenges in sludge treatment process. The aim of this study was to investigate the EPS quantity changes within sludge dewatering by continues ultrasonic – electrocoagulation (US – EC) reactor under different conditions and to determine the most efficient case for reducing these substances. Materials and Methods: In this study, the EPS quantity changes in supernatant were compared after undergoing different conditions of ultrasonic (frequency of 35 and 130 KHz, detention time of 3,5,10, and 30 min) and electrocoagulation (voltage of 20, 30, and 40 V, detention time of 10, 20, and 30 min) processes were compared. Results: The research found that the maximum efficiency of the US-EC reactor was achieved at a frequency of 35 KHz and detention time of 5 min for ultrasonic with voltage of 40 V and at detention time of 30 min for electrocoagulation process as under these conditions total EPS concentration reduced by 69%. Conclusion: According to the results achieved, US – EC reactor significantly reduced the released EPS in supernatant in addition to dewatering sludge.


K Naddafi, R Nabizadeh, S Nasseri, K Yaghmaeian, A Koolivand,
Volume 8, Issue 3 (12-2015)
Abstract

Background and Objectives: Remaining of crude oil in storage tanks usually results in accumulating oily sludge at the bottom of the tank, which should be treated and disposed of in a suitable manner. The efficiency of in-vessel composting process in removing total petroleum hydrocarbons (TPH) from bottom sludge of crude oil storage tanks was investigated in the present study.

Material and methods: The sludge was mixed with immature compost at the ratios of 1:0 (as control), 1:2, 1:4, 1:6, 1:8, and 1:10 (as dry basis) with the initial C:N:P and moisture content of 100:5:1 and 55% respectively for a period of 10 weeks. The moisture adjustment and mixing process were done 3 times a day during the composting period. Sampling and analysis of TPH and pH were done every week and every two days, respectively.

Results: TPH removal in the 1:2, 1:4, 1:6, 1:8, and 1:10 composting reactors was 66.59, 73.19, 74.81, 80.20, and 79.91%, respectively. Thus, initial adjustment of sludge to immature compost ratios plays a great role in reduction of TPH. The results of the control reactors indicated that the main mechanism of TPH removal in the composting reactors was biological process.

Conclusions: In-vessel composting by addition of immature compost as amendment is a viable choice for bioremediation of the bottom sludge of crude oil storage tanks.


F Mohammadi, S Rahimi, Z Yavari,
Volume 8, Issue 4 (3-2016)
Abstract

Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated.

Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN). Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized.

Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI) are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984) with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results.

Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be achieved.


B Ghoreishi, M Shaker Khatibi, H Aslani, A Dolatkhah, A Abdoli Seilabi, M Mosaferi,
Volume 9, Issue 1 (6-2016)
Abstract

Background and Objectives: Qualitative evaluation of sewage sludge before any kind of application is essential. The present study was aimed to investigate Total coliform, Fecal coliform and Salmonella in sewage sludge produced at wastewater treatment plants in Azerbaijan Province, Iran.

Materials and Methods: Nine wastewater treatment plants were chosen in East Azerbaijan Province, and their sludge from drying bed was studied. Total coliforms, thermo-tolerant coliforms, and Salmonella spp., were surveyed during winter time, 2015. Total and thermos-tolerant coliforms were enumerated by EPA method 1680 and salmonella was counted using EPA method 1682.  

Results: In the case of total coliform, sludge sample from Jolfa with 1.82×106 MPN/g showed the highest contamination, while Sarab showed lowest fecal coliform count with 2.02×103 MPN/g. As in the case for fecal coliform, the bacteria count for thermo-tolerant coliforms was higher in Jolfa than other cities; on the other hand, Ahar with no fecal coliform count or less than 2.2 showed the minimum contamination rate to fecal coliforms. In case of Salmonella spp., sludge samples from Ahar and Bostan Abad did not show any salmonella. While sludge sample from Tabriz wastewater treatment plant was determined as the most contaminant sludge with bacteria count equal to 84 per  g. Moreover, sludge sample from Sarab wastewater treatment plant showed the least contamination rate, and bacteria count was 6 per  g.

Conclusion: From the stand point of microbial quality, all sludge samples met class B standards set by USEPA, while none of them could provide class A standards. Thus, special precautions must be taken in case of soil amendments by the sludge produced from wastewater treatment plants. 


F Kafilzadeh, Z Khaledi,
Volume 9, Issue 2 (9-2016)
Abstract

Background and Objectives: Bioaugmentation is a superior technique in bioremediation of contaminated soils with petroleum hydrocarbons. The aim of this study was to evaluate the effect of isolated bacteria from activated sludge of Asalouyeh special zone municipal wastewater treatment for bioaugmentation of kerosene-contaminated soils and to study the growth of isolated bacteria in the presence of different concentrations of this product.

Materials and Methods: Sampling of activated sludge was carried out from two treatment plants in Asalouyeh zone. Isolation of degrading bacteria was performed by culturing the samples on basal mineral medium. Emulsification test and evaluating the kinetic growth of bacteria were carried out in different concentrations of kerosene. Isolated bacteria were inoculated to polluted soils with kerosene oil compound for bioaugmentation and measuring their bioremediation potentials and the rate of biodegradation were measured by InfraRed (IR) spectroscopy.

Results: In this study, three bacterias: Pseudomonas putida, Serratia marcescens, and Proteus mirabilis were isolated and identified as kerosene degrading bacterias from activated sludge. P. putida was recognized as the most powerful degrading bacterium of this oil product according to the emulsification tests, measuring the growth of bacteria in various concentrations of kerosene, the results of bioaugmentation of contaminated column of soil with kerosene, and reducing the level of Total Petroleum Hydrocarbons (TPHs). This bacterium with emulsification rate of 3.8 could reduce 71.03% of TPHs within 30 days.   

Conclusion: According to the adaption of Pseudomonas putida, Serratia marcescens, and Proteus mirabilis in activated sludge with variety of pollutants in sewage, they can be used as non-indigenous bacteria for bioaugmentation and cleaning up the soil contaminated petroleum hydrocarbons.


A Koolivand, K Naddafi, R Nabizadeh, A Jonidi Jafari, M Yunesian, K Yaghmaiean, S Naseri,
Volume 9, Issue 3 (12-2016)
Abstract

Background and Objective: The performance of in-vessel composting process, as one of the most effective methods of oily sludge treatment, depends on factors such as nutrients and temperature. Therefore, it is crucial to investigate the trend of changes of these factors. The aim of the present study was to investigate the trend of changes of organic carbon, nitrogen, phosphorus, and temperature during the composting of bottom sludge of crude oil storage tanks.

Materials and Methods: The sludge was mixed with the immature compost at the various ratios of sludge to compost including 1:2, 1:4, 1:6, 1:8, and 1:10 with the initial C/N/P of 100/5/1 and then was composted for a period of 10 weeks. The process of mixing and moisture adjustment of the mixtures was done 3 times a day during the composting period. Sampling and analysis were performed every week for organic carbon, nitrogen, and phosphorus and every day for temperature.

Results: The research indicated that the concentrations of organic carbon, nitrogen, and phosphorus were decreased sharply during the first weeks of the process and then they were decreased gently. At the final stage of the composting, the ratios of C/N and C/P increased from 20:1 and 100:1 to 26:1 and 166:1, respectively. In addition, the temperature of the reactors was kept in the mesophilic range during the process period.

Conclusion: The similar trend of decrease of organic carbon, nitrogen, and phosphorus in the composting reactors is an indication of decreasing the activity of the microorganisms involved in petroleum hydrocarbons degradation.  


M Jalili, M Mokhtari, Aa Ebrahimi, F Boghri,
Volume 9, Issue 3 (12-2016)
Abstract

Background and Objective: About 1.35×105 tons of pistachio waste are produced in annually Iran that can result in environmental problems if managed improperly. . The purpose of this study was to investigate in-vessel composting of pistachio residuals with addition of cow manure and dewatered sludge as a recycling alternative.

Materials and Methods: Pistachios wastes were combined with weight ratio of 5.5:10 (dewatered sludge: pistachio waste) and weight ratio of 1:10 (Cow manure: pistachio waste) to achieve the carbon to nitrogen ratio of 25:1. The parameters measured were pH, EC, percentage of moisture, total and volatile solids, ash, organic carbon, temperature, and phenol. The 20th edition of SPSS software was used for t-test statistical analysis and comparing the results with standards and Microsoft Excel 2007 was used for drawing the plots.

Results: During the 60-days process of in-vessel composting of pistachio residuals with addition of cow manure, the ratio of carbon to nitrogen reduced from 25:1 to 13:1, dewatered sludge from 25:1 to 14:1; phenol amount in cow maneuver decreased from 4980 to 254 ppm and in dewatered sewage sludge from 6100 to 254 ppm. The maximum temperature in cow manure and dewatered sewage sludge treatments in the composting process reached to 51.9 and 48.9 ˚C respectively.

Conclusion: Results showed that the produced compost with cow manure has a higher fertilizing value compared with the dewatered sewage sludge due to its better organic degradation.



Page 1 from 2    
First
Previous
1
 

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb