Search published articles


Showing 6 results for Ultrasonic

E Kalantar, A Maleki, M Khosravi, S Mahmodi,
Volume 3, Issue 3 (10-2010)
Abstract

BackgroundsAandObjectives: Pseudomonas aeruginosa and Staphylococcus aureus are important pathogens that producewidespread infections. Purpose of this studywas to evaluate the antimicrobial effect of ultrasonic irradiation (US) alone and in combination with antibiotic on antibiotic resistance Pseudomonas aeruginosa and Staphylococcus aureus.
Materials and Methods: In this study ultrasonic irradiation (US) in a laboratory-scale batch sonoreactor with low frequency (42 kHz) plate type transducer at 170W of acoustic power was used. The Water samples, were taken from different wards of the 3 teaching hospitals which were affiliated to the Kurdistan University of Medical Sciences to isolate Pseudomonas aeruginosa and Staphylococcus aureus and also to determine their antimicrobial susceptibility pattern.
Results:Our results showed that Pseudomonas aeruginosa and Staphylococcus aureus were affected by the ultrasound and the bactericidal effect increased with time.
Conclusion: It was found that P. aeruginosa was more susceptible to the ultrasonic treatment than S. aureus. The combination of US with an antibiotic (amoxicillin) enhanced killing of both bacteria over the use of US alone. There were no differences in resistance to ultrasound between isolated strains and standard strains from persian type culture collection.


Mahdi Kargar, Amir Hossein Mahvi,
Volume 5, Issue 1 (4-2012)
Abstract

A MicrosoftInternetExplorer4 Backgrounds and Objectives: Large quantities of sludge are produced in biological wastewater treatment. Because this sludge is highly rotten, it should be stabilized before its disposal. Aerobic and anaerobic digestion is widely considered as stabilization techniques. Because of high retention time and sludge dewatering difficulties, reduction in retention time, operation and maintenance should be given into consideration. Ultrasonic process increases the enzymatic activity, so decreases the hydrolysis time, a limiting factor in digestion process, and contributes to the decrease of the detention time. The objective of this investigation is to determine the effect of ultrasound in improving dewatering and stabilization of aerobic and anaerobic digested sludge. In addition, the impact of ultrasonic treatment on improvement of sludge dewatering and aerobic and anaerobic digestion is compared.
Materials and Methods: In this survey, samples of aerobic and anaerobic digestion were collected from local full-scale Garb Town and Tehran South wastewater treatment plant, respectively. The grab samples were collected for 4 month from July to October 2010. Total numbers of 20 samples were collected biweekly for each type of digestion. Each sample was sonicated for 15, 30, 60, and 90 min under 35 and 131 kHz frequencies separately. Total solids, volatile solids , pH, temperature , total COD, dissolved COD and settle able solids were measured. Ultrasound bath of the solution in a 300 mL glass reactor was performed as a bath reactor with power of 500 W.
Result: The results showed that the application of ultrasonic wave increased dissolved COD and temperature and decreased volatile solid, pH and settle able solids. Application of ultrasonic wave with frequency of 131 kHz decreased the VS and increased the dewatering of sludge more effective than the 35 kHz frequency and the highest performance was at 15 min of time and 131 kHz of frequency. Also sonication method showed better efficiency for anaerobic sludge samples compared to the aerobic sludge samples.                 
Conclusion: The results obtained showed that digestion and dewatering properties of sludge improved by ultrasonic application. Therefore it can be used as an alternative method for the sludge treatment.

!mso]> ject classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui>


Mahdi Sadeghi, Kazem Naddafi, Ramin Nabizadeh,
Volume 7, Issue 2 (10-2014)
Abstract

Background and objective: Perchloroethylene is a chlorinated hydrocarbon used as a solvent in many industries and services activities such as dry cleaning and auto industry as degreasing. We carried out a bioassay using Daphnia Magna in order to determine the ecological effects of wastewater treatment through applying advanced oxidation processes (ultrasonic, ultraviolet irradiation and hydrogen peroxide processes) for removal of perchloroethylene. Materials and Methods: Due to the sensitivity of Daphnia and reports indicating this species is the most sensitive aquatic invertebrate to a variety of organic compounds, toxicity of perchloroethylene and its intermediate degradation products during applying different processes was tested using Daphnia. Lethal concentration (LC50) and toxic units (TU) were determined. In to determine toxicity of perchloroethylene, its stock solution was prepared at a concentration of 100 mg/L. Then, nine samples each containing 0 (control), 5, 10, 20, 30, 40, 50, 75, and 100% by volume of the primary stock solution were prepared. To determine the toxicity of the intermediate products of perchloroethylene by ultrasonic, photolysis, photolysis with hydrogen peroxide and photosonic processes, an initial concentration of perchloroethylene for each reactor (100 mg/L) was taken. All experiments were carried out at the Laboratory of Microbiology, Faculty of Health, Tehran University of Medical Sciences, Iran. Results: It was found that the 24 h LC50 for perchloroethylene on Daphnia Magna was 35.51 mg /L. The 48 h, 72 h and 96 h LC50 of perchloroethylene were 28.058, 21.033, and 19.27 mg/L respectively. Toxicity of perchloroethylene was decreased after oxidation processes. Conclusion: The toxicity after hybrid processes was lower than the single processes. The toxicity reduction was the same during all time period. Hence, the hypothesis of reducing toxicity of the intermediate products of perchloroethylene degradation after the abovementioned processes is acceptable. It is noteworthy that although there are different intermediate compounds in the effluent of various chemical oxidation processes, , but they are less toxic compared with the original perchloroethylene this may be due to the partially concentration of intermediate products that will decrease toxicity.


A Heidari, R Nabizadeh, M Alimohammadi, M Gholami, A.h Mahvi,
Volume 8, Issue 1 (8-2015)
Abstract

Background and Objectives: Reduction of released extracellular polymeric substances (EPS) during sludge dewatering is one of the main challenges in sludge treatment process. The aim of this study was to investigate the EPS quantity changes within sludge dewatering by continues ultrasonic – electrocoagulation (US – EC) reactor under different conditions and to determine the most efficient case for reducing these substances. Materials and Methods: In this study, the EPS quantity changes in supernatant were compared after undergoing different conditions of ultrasonic (frequency of 35 and 130 KHz, detention time of 3,5,10, and 30 min) and electrocoagulation (voltage of 20, 30, and 40 V, detention time of 10, 20, and 30 min) processes were compared. Results: The research found that the maximum efficiency of the US-EC reactor was achieved at a frequency of 35 KHz and detention time of 5 min for ultrasonic with voltage of 40 V and at detention time of 30 min for electrocoagulation process as under these conditions total EPS concentration reduced by 69%. Conclusion: According to the results achieved, US – EC reactor significantly reduced the released EPS in supernatant in addition to dewatering sludge.


R Barati Rashvanlou, M Farzadkia,
Volume 11, Issue 1 (6-2018)
Abstract

Background and Objective: Ultrasonic disintegration is a pretreatment process before stabilization and dewatering that degrades sludge and changes its physical and chemical characteristics. The aim of this study was to investigate the effectiveness of ultrasonic in enhancing hydrolyses, stabilization and dewatering of municipal raw activated sludge.
Materials and Methods:  The samples were taken from returned activated sludge and then they were exposed to ultrasonic (Frequency: 20 and 40 kHz) in different times (0.5, 1, 3, 5, 10, 15, 30, and 60 min). The effectiveness of ultrasonic for hydrolysis, stabilization and dewatering processes were determined with measuring TS, TSS, CST, SRF, VS, nVS, VSss, and VSsol.
Results: VSsol was increased by 73% in 15 min and at frequency of 20 kHz, whereas VSsol increas was100% at 10 min and 40 kHz. The reduction of VS was observed at 15 min and 20 kHz. Then after, it was reached 18% after 60 min. For 40 kHz, VS reduction started at 10 min and reached 24% after 60 min. Specific resistance of sludge at two frequencies of 20 and 40 kHz and contact time of 1 min were decreased by 25 and 20% respectively. The capillary suction time at the frequencies of 20 and 40 kHz and contact time of 1 min was decreased 28 and 21%, respectively.
Conclusion: The optimum effectiveness of ultrasonic in hydrolysis of organic matter of raw biological sludge was at the contact time of 10 min and frequency of 40 kHz. The highest stabilization at the frequency of 40 kHz was observed at 60 min contact time. The best condition for sludge dewatering was at frequency of 20 kHz and contact time of 1 min.
 

Reza Barati Rashvanlou, Mahdi Farzadkia, Abbas Ali Moserzadeh,
Volume 14, Issue 1 (5-2021)
Abstract

Background and Objective: Hydrolysis of fat, oil and grease by ultrasonic waves is a pre-treatment method before anaerobic digestion which can change their physical, chemical and biological properties. The main purpose of this study was to investigate the efficiency of ultrasonic waves to improve the hydrolysis process and its use as an auxiliary substrate to increase the efficiency of anaerobic digestion process along with municipal sewage sludge.
Materials and Methods: Sampling of fat and oil of the degreasing unit and physical preparation by conducting ultrasonic waves with frequencies of 20 kHz and current density of 0.012-0.14 W/mL within 0-12 min were performed. The efficiency of pretreatment process were performed through tests such as soluble chemical oxygen demand (SCOD), and lipase enzyme activity. In addition, the anaerobic digestion process were evaluated by measuring the TS, VS, VA (volatile acidity), alkalinity, biogas production and biogas methane content.
Results: The results showed that the highest increase in the activity of lipase enzyme under ultrasonic effect with a power of 0.1 w/mL was obtained after 8 minutes. Organic loading with 10%, 20% and 40% FOG/MSS ratios: resulted in 55%, 66% and 64% increase in methane production compared to the control samples, respectively. Organic loading over the 40% FOG/MSS caused a limitation in the simultaneous digestion process.
Conclusion: The results show that ultrasonic wave pretreatment with optimal power and time can improve the hydrolysis of TFOG while increasing the activity of lipase enzyme and also its use as an auxiliary substrate can enhance digestion performance and make digestion more stable.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb