Search published articles


Showing 2 results for Neural Networks

L Tapak, N Shirmohammadi-Khorram , O Hamidi, Z Maryanaji,
Volume 14, Issue 2 (9-2018)
Abstract

Background and Objectives: Identification of statistical models has a great impact on early and accurate detection of outbreaks of infectious diseases and timely warning in health surveillance. This study evaluated and compared the performance of the three data mining techniques in time series prediction of brucellosis.
 
Methods: In this time series, the data of the human brucellosis cases and climatology parameters of Hamadan, west of Iran, were analyzed on a monthly basis from 2004 (March/April) to 2017 (February/March). The data were split into two subsets of train (80%) and test (20%). Three techniques, i.e. radial basis function (RBF) and multilayer perceptron (MLP) artificial neural network methods as well as K Nearest neighbor (KNN), were used in both subsets. The root mean square errors (RMSE), mean absolute errors (MAE), mean absolute relative errors (MARE), determination coefficient (R2) and intra-class correlation coefficient (ICC) were used for performance comparison.
 
Results: Results indicated that RMSE (23.79), MAE (20.65) and MARE (0.25) for MLP were smaller compared to the values of the other two models. The ICC (0.75) and R2 (0.61) values were also better for this model. Thus, the MLP model outperformed the other models in predicting the used data. The most important climatology variable was temperature.
 
Conclusion: MLP can be effectively applied to diagnose the behavior of brucellosis over time. Further research is necessary to detect the most suitable method for predicting the trend of this disease.
 
Nasrin Talkhi, Nooshin Akbari Sharak, Zahra Rajabzadeh, Maryam Salari, Seyed Masoud Sadati, Mohammad Taghi Shakeri,
Volume 18, Issue 3 (12-2022)
Abstract

Background and Objectives: Due to the high prevalence of COVID-19 disease and its high mortality rate, it is necessary to identify the symptoms, demographic information and underlying diseases that effectively predict COVID-19 death. Therefore, in this study, we aimed to predict the mortality behavior due to COVID-19 in Khorasan Razavi province.
Methods: This study collected data from 51, 460 patients admitted to the hospitals of Khorasan Razavi province from 25 March 2017 to 12 September 2014. Logistic regression and Neural network methods, including machine learning methods, were used to identify survivors and non-survivors caused by COVID-19.
Results: Decreased consciousness, cough, PO2 level less than 93%, age, cancer, chronic kidney diseases, fever, headache, smoking status, and chronic blood diseases are the most important predictors of death. The accuracy of the artificial neural network model was 89.90% in the test phase. Also, the sensitivity, specificity and area under the rock curve in this model are equal to 76.14%, 91.99% and 77.65%, respectively.
Conclusion: Our findings highlight the importance of some demographic information, underlying diseases, and clinical signs in predicting survivors and non-survivors of COVID-19. Also, the neural network model provided high accuracy in prediction. However, medical research in this field will lead to complementary results by using other methods of machine learning and their high power.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb