جستجو در مقالات منتشر شده


1 نتیجه برای نزدیک‌ترین همسایه

لیلی تاپاک، نسرین شیر محمدی خرم، امید حمیدی، زهره مریانجی،
دوره 14، شماره 2 - ( 6-1397 )
چکیده


مقدمه و اهداف: شناسایی مدل‏های آماری دارای پیش‏بینی‏های دقیق در تعیین دقیق و به‌هنگام طغیان بیماری‏های عفونی در نظام مراقبت بهداشتی این بیماری‏ها بسیار با اهمیت است. این مطالعه با هدف ارزیابی و مقایسه عملکرد سه روش یادگیری ماشین در مدل‏سازی و پیش‏بینی سری زمانی بروسلوز بر اساس پارامترهای اقلیمی انجام شد.
روش کار: در این مطالعه موارد بروسلوز انسانی و پارامترهای اقلیمی به‌صورت ماهانه، در طول 12 سال (95-1383) از استان همدان واقع در غرب ایران تحلیل شد. داده‏ها به دو زیرمجموعه آموزش (80 درصد) و آزمون (20 درصد) تقسیم شد. روش‏های تابع پایه شعاعی و چند لایه پروسپترون و نزدیک‌ترین همسایه سری زمانی به هر زیرمجموعه برازش شد. ارزیابی عملکرد مدل‏ها با استفاده از معیارهای RMSE، MAE، MRAE، R2 و ICC انجام شد.
یافته‌ها: نتایج نشان داد که مقادیر معیارهای (79/23)RMSE، (56/20)MAE، (25/0)MRAE برای مدل شبکه عصبی چند لایه پرسپترون کوچک‌تر از مقادیر آن‏ها در دو مدل دیگر بود. هم‌چنین، در این مدل مقادیر بزرگ‌تری برای معیارهای (61/0)R2 و (75/0)ICC به‌دست آمد. بنابراین مدل شبکه‌ی عصبی چند لایه پرسپترون در پیش‏بینی داده‏های مورد مطالعه عملکرد بهتری داشت. دما نسبت به سایر پارامترهای اقلیمی مؤثرترین عامل در بروز این بیماری بود.
نتیجه‌گیری: شبکه عصبی چندلایه پرسترون می‏تواند به‌عنوان یک روش کارا برای تشخیص رفتار روند بروسلوز در طول زمان به کار رود. با این حال مطالعات بیش‌تری با هدف کاربرد و مقایسه این‏ روش‏ها برای شناسایی مناسب‏ترین روش پیش‏بینی روند این بیماری مورد نیاز است.

صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله اپیدمیولوژی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb