Search published articles


Showing 2 results for Motevaselian

M. Hasani Tabatabaei , M. Mirzaei , M. Ataei , F. Motevaselian ,
Volume 18, Issue 4 (5 2006)
Abstract

Background and Aim: The majority of commercial curing units in dentistry are of halogen lamp type. The new polymerizing units such as blue LED are introduced in recent years. One of the important side effects of light curing is the temperature rise in composite resin polymerization which can affect the vitality of tooth pulp. The purpose of this study was to evaluate the temperature rise in two different composite resins during polymerization with halogen lamps and blue LED.

Materials and Methods: This experimental study investigated the temperature rise in two different composites (Hybrid, Tetric Ceram/Nanofilled, Filteke Supreme) of A2 shade polymerized with two halogen lamps (Coltolux 50, 350 mW/cm2 and Optilux 501 in standard, 820 mW/cm2 and Ramp, 100-1030 mW/cm2 operating modes) and one blue LED with the intensity of 620 mW/cm2. Five samples for each group were prepared and temperature rise was monitored using a k-type thermocouple. Data were analyzed by one-way ANOVA, two-way ANOVA and Tukey HSD tests with P<0.05 as the limit of significance.

Results: Light curing units and composite resins had statistically significant influence on the temperature rise (p<0.05). Significantly, lower temperature rise occurred in case of illumination with Coltolux 50.There was no significant difference between Optilux 501 in standard curing mode and LED. Tetric Ceram showed higher temperature rise.

Conclusion: According to the results of this study the high power halogen lamp and LED could produce significant heat which may be harmful to the dental pulp.


M. Hasani Tabatabaei , M. Mirzaei , M. Ataei , F. Motevaselian ,
Volume 20, Issue 2 (9 2007)
Abstract

Background and Aim: Halogen lamp is the commonly used light source for composite photo polymerization. Recently, high power halogen lamps, LED and plasma arc are introduced for improving the polymerization. The aim of this study was to investigate the effect of conventional and high power halogen lamps and LED light curing unit on degree of conversion of two different composite resins.

Materials and Methods: In this in vitro experimental study two halogen units (Coltolux 50 with the intensity of  330 mW/cm2 and Optilux 501 with two different operating modes of standard with the intensity of 820 mW/cm2 and Ramp with the intentsiy of 100-1030mW/cm2) and one LED light curing unit (620 mW/cm2) were used. The composites were hybrid (Tetric ceram) and nanofilled (Filteke supreme). Each materials/curing method contained three samples and degree of conversion (DC) was measured with FTIR. Data were analyzed statistically with one way and two way ANOVA, Tukey HSD. P<0.05 was considered as the limit of significance.

Results: Tetric ceram revealed higher DCthan Supreme. Tetric ceram showed a significant decrease in DC when Coltolux 50 was used in comparison to LED and Optilux 501. The latters did not show significant effect on DC of this material. DC of Supreme polymerized with various curing modes was not significantly different.

Conclusion: Based on the results of this study, degree of conversion in hybrid composites was higher than nanofilled. In comparison with conventional halogen lamp (Coltolux 50), high intensity halogen lamps and LED unit significantly lead to higher degree of conversion in hybrid composites.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb