Search published articles


Showing 3 results for Nanoparticles

Behrad Tanbakuchi, Abolghasem Bahador,
Volume 31, Issue 2 (9-2018)
Abstract

Background and Aims: The purpose of this study was to investigate the application of nanoparticles in orthodontics.
Materials and Methods: This study was conducted using a review method by searching Scopous, Google Scholar and Web of science. Key words (Nano silver, Nano ZnO, Nano Chitosan, Nano Curcumin and Nanoparticles) were used. These searches were limited to the English ariticles after the year 2010.
Conclusion: According to the published studies, silver nanoparticles, curcumin, titanium oxide, chitosan, zinc oxide, quaternary ammonium derivatives exhibit appropriate antibacterial properties. Further studies are recommended to investigate the effect of each of these nanoparticles on the bond strength. In order to reduce the decay, there is lack of evidences regarding the addition of ACP nanoparticles and nanoparticles of calcium- phosphate and fluoride. Therefore, further studies are recommended. Studies have shown that the addition of zinc oxide nanoparticles to orthodontic wires could reduce the friction between the wire and the bracket. While, adding titanium oxide nanoparticles to bracket increased the friction. Although, evidences in this regard are inadequate but it seems that nanoparticulates are less toxic than conventional materials.aa

Alireza Daneshkazemi, Abdolrahim Davari, Zahra Usefi, Niloofar Fallah, Solmaz Ghanbarnejad, Pedram Daneshkazemi,
Volume 33, Issue 3 (10-2020)
Abstract

Background and Aims: Adding nanoparticles to dental composite resins, could reduce bacterial adhesion and secondary caries. Thermocycling can resemble in-vitro conditions to the oral environment. The aim of this study was to determine the effect of thermocycling on the microleakage of a mixture of copper oxide nanoparticles and flowable composite.
Materials and Methods: In this in-vitro study, 88 premolar teeth were divided into eight groups based on the application of copper oxide nanoparticles with concentrations of 0.1% and 0.3% w/w and thermocycling by 0, 1000, 5000 and 15,000 cycles. The occlusal grooves of the teeth were sealed with the mixture of flowable composite and copper oxide nanoparticles, and the teeth were thermocycled. Next, the teeth were immersed in methylene blue 2% solution for 24 hrs and were cut and the microleakage was evaluated by a stereomicroscope (hp/USA). Data were analyzed using Kruskal-Wallis and Mann-Whitney tests at the significance level of 0.05.
Results: In the groups with 0.1 % copper oxide nanoparticles, the mean microleakage increased significantly with increasing the number of thermocycling rounds (P=0.032). The difference in the microleakage between the groups exposed to 0 and 15,000 termocycling was significant (P=0.019). However, thermocycling had no significant effect on the microleakage of groups with concentration of 0.3% (P=0.780). The specimens subjected to the 0, 1000, 5000 and 15000 thermocycling in two concentrations of copper oxide nanoparticles showed no significant difference in the microleakage.
Conclusion: In groups containing copper oxide nanoparticles with a concentration of 0.1%, the microleakage increased by increasing the number of thermocycling up to 15,000 cycles compared to the control group. However, this did not have significant effect for the concentration of 0.3% copper oxide nanoparticles.

Sajjad Pezeshki, Saharnaz Hassanzadeh Kourandeh,
Volume 33, Issue 4 (1-2021)
Abstract

Background and Aims: Poly methyl methacrylate (PMMA) is still the most commonly used material in prosthetic dentistry. However, there are problems with the mechanical properties of this type of material including low flexural strength. Addition of nanoparticles into the polymer is one way to improve the mechanical properties of acrylic resin. In the present study, the effect of silicon dioxide (SiO2) nanoparticles addition into the heat-cured acrylic resin in different concentrations was investigated. Because of the controversy had been observed in previous articles, the aim of this study was to investigate the mechanical properties of PMMA/SiO2 nanoparticle obtained from different percentages of SiO2.
Materials and Methods: In this in-vitro study, acrylic resin specimens containing 0, 1, 3 and 5% silicon dioxide (SiO2) were prepared. The specimens were placed inside the gypsum molds and placed under pressure for three times. The mold cured in boiling water for 30 min. A trimmer was used to remove the additives. Sandpapers with 180, 320 and 600 grains of silicon-carbide were used for final finishing and polishing. Finally, the flexural strengths were measured using a universal testing machine. Data were finally analyzed by ANOVA and Tukey tests at a significant level of 5% using SPSS software.
Results: The mean flexural strengths and standard deviations of control group, 1% filler, 3% filler, and 5% filler, were 57.24±8.30, 69.98±7.26, 60.16±9.18, and 61.59±9.28 MPa, respectively. After comparing significant values between each group with the control group, a significant difference was observed between the control and 1% filler group (P=0.021). However, no significant difference was observed between 3 and 5% fillers with the control group or each other. The significant differences (P-value) between 3% filler and control group were 0.892 and between 5% filler and control group was 0.975.
Conclusion: The results of the present study showed that the use of low percentage of silicone dioxide (SiO2) nanofiller could improve the flexural strength of poly methyl methacrylate acrylic resin.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb