Search published articles


Showing 2 results for Zirconium

Mh. Shahroodi , H Berenji ,
Volume 14, Issue 1 (7-2001)
Abstract

Many different methods are suggested to restore endodontically treated teeth. Prefabricated posts can not be indicated for all teeth and cast posts require extra time and cost. In addition, with the introduction of full ceramic restorations, achieving the ideal esthetic with metal post underneath them may be problematic or impossible because the darkness of the metallic posts may show through the highly translucent all ceramic restorations. In this article the review of litature and describiton of applied methods of different procedure in restoring the root canal therapied teeth and few techniques of non metallic posts fabrication such as fiber reinforced composite and zirconium oxide posts have been described.
Adel Pirjamalineisiani, Mohsen Sarafbidabad, Nima Jamshidi,
Volume 29, Issue 3 (10-2016)
Abstract

Background and Aims: Improving dental implantation conditions in order to reduce the failure is always desirable for researchers. The aim of this study was to compare two different materials of dental implants from the viewpoint of biomechanical effect after placement and loading in the mandible.

Materials and Methods: A 3D model of mandible was designed in the MIMICS 10.01 software. Then, by using the obtained model, the end part of the mandible was designed in CATIA V5 software and a drilling operation was performed on the cortical bone of mandible by finite element analysis simulation method in DEFORM-3D V6.1 software. Thereafter, the 3D model of created hole was extract from the drilled site and an ITI dental implant model designed in the CATIA V5 software, was placed in the hole. The space remained between the implant and cavity was considered as a newly-formed cortical bone in drilled site after 6 weeks of dental implant placement and the mechanical properties of newly-formed bone were entered to DEFORM-3D V6.1 software. Then, a load was applied on the top surfaces of two dental implant models with the materials titanium and zirconium-2.5% niobium.

Results: The emerged volume changes in newly formed cortical bone around Ti and Zr-2.5 Nb dental implants were measured 0.238 and 0.242 percent, respectively. Furthermore, micro-motion of Ti and Zr-2.5 Nb dental implants were measured 0.00514 and 0.00538 mm, respectively.

Conclusion: The results of this study showed that Ti dental implant created better conditions than Zr-2.5 Nb dental implant in the mandible.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb