Search published articles


Showing 10 results for Dehghani

S. Dodangeh, S.a. Zakerian, M. Dehghani, S.m. Ghazi Tabatabaie, R. Pirmand,
Volume 6, Issue 1 (4-2016)
Abstract

Introduction: Emotional intelligence as the ability to understand and control feelings and emotions, and job satisfaction as positive attitudes of employees towards their jobs is amongst the effective indicators in the workplaces. Therefore, this research invetigated the effect of emotional intelligence of employees on their job satisfaction in one of the Oil refineries in Tehran.
 

Methods and Materials: This research is a practical and cross-sectional study. The statistical population consisted of 300 employees selected by stratified random sampling method. Bar-On questionnaire (90-item) and JDI questionnaire (70-item) were used in order to measure emotional intelligence and job satisfaction, respectively. LISREL8.72 software was employed to estimate causal effect between study variables and calculation of descriptive indices and comparison of variables were done by means of SPSS software version 18.
 

Results: According to results, there was a direct association between emotional intelligence of employees and their job satisfaction. In other words, the higher emotional intelligence, the higher rate of job satisfaction. Of the 15 sub-scales of emotional intelligence, Responsibility and Self-expression obtained the highest and the lowest scores, respectively. Furthermore, Supervisor and Salaries were ranked as the highest and the lowest valued subscales of job satisfaction. According to the results, employees job satisfaction level are improved in parallel to increase of education level and the maximum score of this variable was belonged to the age group of 30-45 years.}
 

Conclusion: Emotional intelligence, as a psychological variable, affects the worker's job satisfaction. Considering the direct relationship between these two variables, by training and increasing the emotional intelligence of employees, job satisfaction and consequently their efficiency and productivity can be improved in the workplaces.


Maryam Dehghanipoor, Manuchehr Omidvari, Farideh Golbabaiei ,
Volume 6, Issue 4 (12-2016)
Abstract

Introduction: Heat stress is one of the harmful risks in casting and die casting industries, which can not only cause work-related diseases but also can impair the performance and safety of workers. Since the indicators that are used to evaluate heat stress are very different, it is very difficult to choose a suitable index. The aim of this study was to determine the optimum heat stress index in foundry, die-cast, and road construction industries using FAHP and Topsis methods.

Material and Method: In order to determine optimum heat stress index in foundry, die-cast, and road construction industries, first, the prioritization criteria were defined by experts (including ease of measurement, measurement accuracy, comprehensiveness, time, cost, and correlation). Then, considering these criteria, the best heat stress index was determined based on experts’ opinions and using FAHP and Topsis methods.

Result: The results of this study suggest that given the current conditions and criteria, WBGT and P4SR is the best indices for foundry, die casting and construction.

Conclusion: The results showed that according to comprehensiveness, accuracy and correlation criteria, the WBGT index is considered as the best indicator of heat stress assessment in foundry, die-cast and road construction industries. Moreover, the HSI ranked in the last place due to the complexity and cost of its calculation.


Fateme Dehghani, Seyed Abolfazl Zakerian, Asma Zare, Fariborz Omidi, Zahra Moradpour, Abouzar Eynipour, Masoud Ghanbari Kakavandi,
Volume 6, Issue 4 (12-2016)
Abstract

Introduction: A high percentage of musculoskeletal disorders in workplaces occur due to awkward posture and non-ergonomic design of the work stations for lifting and carrying of materials. To avoid these injuries, jobs should be designed in a way that ergonomics risk factors are controlled properly. The aim of this study was to utilize ergonomics interventions to minimize ergonomics risk factors in bag packing unit in a mineral processing plant.

Material and Method: This cross sectional study was carried out among 20 workers of bag packing unit. Camera recording of working postures, evaluation of medical records, interview, and REBA technique were used to identify the ergonomic risk factors. Interventions included changing the conveyor belt height and the use of spring pallets (spring table). Data were analyzed using Paired T-Test by SPSS software version 18.

Result: Before implementing ergonomics intervention, a total of 75% of evaluated postures by REBA technique obtained score of 8-10 (very high risk level) and 25% had score of 11-15 (very high risk level) that correspond to the action level 3 and 4, respectively. Following the implementation of ergonomics interventions, a total of 90% of the analyzed postures showed action level 2 (moderate risk level) and the remainder 10 percent of evaluated postures showed high risk level. Comparison of REBA technique scores before and after implementing interventions showed a significant difference (P-value < 0.05).

Conclusion: Based on the findings of this study, the implementation of ergonomics interventions has remarkably decreased the required action level and it may be able to improve work-related postures.


Asma Zare, Saeid Yazdani Rad, Fateme Dehghani, Fariborz Omidi, Iraj Mohammadfam,
Volume 7, Issue 3 (9-2017)
Abstract

Introduction: Despite the ongoing efforts to reduce human errors in various systems, errors and unsafe behavior are the main cause of accidents in the workplace. Many studies have been conducted to identify and improve human error in recent years. The number of studies about the human error with the variety of topics has made it an overall overview difficult for researchers. Therefore, a systematic review of previous studies can be the best way to share useful findings and make a trend for the future research in the field of human error.

Material and Method: After a systematic search of valid databases, the analysis was focused on the title, publication year, journal title / Congress, city/region, the level of organization, job search, type of organization and the methods used. And articles were evaluated based encryption.

Result: Three groups of human error studies were identified. The first group studies in safety management, safety assessment, and safety planning have investigated the human error. The second group has examined the influence of individual characteristics such as behavior, cognition, and education on human error. The third group has focused on data arise from the previous accident to improve behavior and reduce human error. To make a better orientation for next studies two essential aspects included chronological analysis and thematic analysis was considered.

Conclusion: This study made an attempt to identify the gaps in the studies related to human error and afford some appropriate strategies.


Fateme Dehghani, Farideh Golbabaei, Seyed Abolfazl Zakerian, Fariborz Omidi, Mohammad Ali Mansournia,
Volume 8, Issue 1 (4-2018)
Abstract

Introduction: Adverse effects of volatile organic compounds (VOCs) including general and specific effects like carcinogenic of benzene are well known. The aim of this study was to evaluate occupational exposure to BTEX compounds in the painting unit of an automotive industry and subsequently health risk assessment of exposure to these compounds.

Material and Method: This cross-sectional study was conducted in the paint unit of an automotive industry including painting cabin, pre-painting salon and painting salon sections. After analyzing samples, gathered from different sections, by GC-MS, BTEX compound were identified as the main contaminants. In the next step, NIOSH1501 and EPA methods were used to measure and analysis of BTEX and risk assessment, respectively.

Result: Findings showed that benzene concentration in painting cabin was higher than occupational exposure limits provided by the Environmental and Occupational Health Center of Iran. Life time cancer risk for benzene per 1000 has been reported10, 3.63 and 1.27in the painting cabin, pre-painting and salon sections, respectively. It was also for ethyl benzene 2.5m 1.8 and 38.0 in the mentioned sections, respectively. The non-cancer risk for benzene and xylene in the painting cabin and pre-painting sections were higher than recommended allowable level.

Conclusion: Regarding the high level of cancer risk values obtained for benzene and ethylbenzene in the studied units and also high values of non-cancer risk for benzene and xylene, it is recommended to conduct biological exposure assessmnet of the workers and improve existence control systems using modern engineering control systems.


Bahram Harati, Ali Karimi, Ali Askari, Fateme Dehghani, Aref Nasrollahi,
Volume 8, Issue 2 (6-2018)
Abstract

Introduction: Being aware of the explosion, fire radius, and their damages, has an important role in accident prevention methods. Therefore, the aim of this study was modeling and evaluation of the consequences of propylene oxide spill in a petrochemical company.
 

Material and Method: The QRA method including seven steps was used in this study. In the present study, in order to examine and modeling of the propagation propylene oxide, first a familiarization with the process information of the unit was done then, a risk assessment was carried out adopting HAZOP technique to identify existing hazards. Consequence analysis in a process unit includes: selecting important scenarios, characterizing scenario, modeling the consequences of scenarios, analyzing the results and determining the percentage of mortality. PHAST software version 6.51 was used for modeling of outcomes and assessment propylene leak.
 

Result: urves of the firing zones of sudden release of propylene oxide showed that the influence puts are included up to radius of 0.15 meters in the scenario of leakage 5 mm, in scenarios with leaks 25 mm to a radius of 1.1 meters and in scenarios with leakage of 100 mm to a radius of 39 meters. The maximum intensity of flash fire in the initial point Scenario 5 mm was 4.2 kW/m2, in the scenario of radiation leakage was 25 mm at the distance to 5 meters from the fire intensity up to maximum of 9 kW/m2, and also in the scenario with 100 mm flash fire radiation leak at an earlier point fire was 14 kW/m2. The maximum intensity of thermal radiation at the distance to 5 meters up to 16.5 kW/m2, and maximum distance of 80 meters around the reservoir affected. The mortality rate of flash fire has exposed employees, was 50 percent.
 

Conclusion: Many accidents caused by leakage and explosion were due to corrosion, spoil tanks and equipment, and the majority of such accidents can be prevented by technical inspections and continuous audits.


Fariborz Omidi, Reza Ali Fallahzadeh, Fateme Dehghani, Bahram Harati, Saied Barati Chamgordani, Vahid Gharibi,
Volume 8, Issue 3 (9-2018)
Abstract

Introduction: Workers in steel manufacturing companies are extensively exposed to the volatile organic compounds (VOCs). Considering the health effects of these compounds, the purpose of this study was to determine occupational exposure to the BTEX compounds and also evaluation of carcinogenic risk due to benzene and non- carcinogenic risk for BTEX compounds in a steel industry.

Material and Method: This cross-sectional study was conducted in the coke production unit of the steel making industry. After collecting personal samples from breathing zone of the workers and analyzing of the samples the levels of exposure to the BTEX were quantitatively determined using Gas chromatography equipped with Flame Ionization Detector (GC-FID), according to the NIOSH 1501 standard method. Then, cancer risk due to benzene and non-cancer risks from BTEX compounds were calculated using Monte-Carlo technique.

Result: The analysis of personal samples indicated that benzene concentration in energy and biochemistry and benzol refinement sections of the plant were higher than occupational exposure limits (OELs). Among the studied sections, benzol refinement as the most polluted section had the highest concentration of BTEX compounds. Non-cancer risk due to BTEX compounds in all studied sections was lower than one. Benzene cancer risk in energy and biochemistry, benzol refinement and experimental furnace sections was higher than maximum recommended value by EPA.

Conclusion: Due to the high concentration of benzene in energy and biochemistry and benzene refinement sections as well as the resultant carcinogenic risk, improvement of existing control systems and the use of modern engineering systems are necessary to control occupational exposure.


Fateme Dehghani, Seyed Abolfazl Zakerian, Farideh Golbabaei, Fariborz Omidi,
Volume 9, Issue 1 (4-2019)
Abstract

Introduction: Exposure to organic solvents cause adverse effects on various systems such as the central nervous system, behavioral and cognitive changes, sleep disorders, as well as changes in mood. This study was aimed to evaluate the effect of long term exposure to mixed organic solvents on positive and negative aspects of the mood of the workers of a painting industry.  
Material and Methods: In this cross-sectional study, based on the obtained results of Gas chromatography–mass spectrometry (GC-MS) analysis and neuro-behavioral effects of benzene, toluene, ethylbenzene and xylene (BTEX) compounds, these compounds were selected as the main organic solvents for the study and the amount of these compounds was quantitatively determined according to the National Institute for Occupational Safety and Health (NIOSH) 1501. Furthermore, the mood status of workers was evaluated by the validated Persian version of BRUMS (The Brunel Mood Scale) questionnaire and the obtained data were analyzed using SPSS software, version 24.
Results: The mean of exposure to mixed organic solvents in different sections of the exposed group was reported to be 0, 0.27, 0.76, and 2.6 ppm. By increasing exposure to mixed organic solvents from the first quartile to the fourth quartile, fatigue and calmness scores were increased with a strong correlation (r = 0.7). Also the fatigue and calmness scores in the groups having elevated exposure were significantly higher than the control group. Furthermore, the obtained scores for tension, depression and anger in the exposed group were significantly higher than control group (p- value <0.05). There was no significant relationship between demographic data such as age, work experience and smoking with different subscale of mood status.
Conclusion: Long term exposure to low level of BTEX compounds has made an adverse effect on positive and negative mood status in different aspects. Also, increasing the level of exposure to mixed organic solvents was positively correlated to the obtained scores for fatigue and calmness.
Azam Biabani, Mohsen Falahati, Iraj Alimohammadi, Mojtaba Zokaei, Hamed Jalilian, Ali Dehghani, Mohammad Najafi Majareh,
Volume 11, Issue 1 (3-2021)
Abstract

Introduction: Determining methods for assessing heat stress in different work environments is one of the major challenges for researchers in this field. The purpose of this study was to validate WBGT index and heat pressure assessment (HPA) by some physiological responses in Iranian South Oil Company.
Material and Methods: This descriptive-analytical study was carried out on 154 employees of Kharg, Asalouyeh and Mahshahr oil terminals recruited from three different working conditions including indoor, outdoor and rest environments in the summer. The amount of heat stress in the workplace was evaluated by WBGT index HPA method. To meet this purpose, the environmental parameters i.e., temperature, wet temperature, radiation temperature, relative humidity, water vapor pressure and air flow rate were determined. In addition to the direct reading method by the WBGT meter, ISO 7243 was used to calculate the WBGT index. In order to validate the heat stress indicators, physiological parameters of oral temperature, tympanic temperature and work metabolism were measured.
Results: The results of paired sample t-test showed a significant difference between WBGT index and HPA in indoor and outdoor environment (P<0.05). Moreover, there was a significant difference between the physiological indices of oral and tympanic temperatures and work metabolism in the indoor and outdoor environment (P<0.05). Furthermore, the correlation test was significant between WBGT index as an independent variable and HPA as a dependent variable (P<0.05)  and showed a high correlation (R2=0.914) between WBGT index with oral temperature and tympanic temperature . Also, the rate of work metabolism was significantly related with the aforementioned parameters (P<0.05) and was equal to R2=0.423, R2=0.335, R2=0.552, respectively. The correlations were also significant between HPA with Oral temperature, tympanic temperature and work metabolism (P<0.05)and were equal to R2=0.632, R2=0.605, R2=0.557, respectively. The results showed also that the correlation rate between the HPA with physiological parameters is stronger than that between physiological parameters with the WBGT index.
Conclusion: This study showed that WBGT and HPA methods are useful for assessing the heat stress of Iranian South Oil Company. Also, the HPA method is more reliable for assessing heat stress in these regions.
Reza Jafari Nodoushan, Mostafa Azimzadeh, Sahar Bagheri, Arefeh Dehghani Tafti,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: In recent years tend to use of natural fibers has increased in making sound absorbers. Fiber-based natural materials have low density, low production costs, and are biodegradable.
Material and Methods: In this study, the effect of nanoclay and the behavior of the nanocomposite specimens containing tea waste, polypropylene, and nanoclay in the sound absorption coefficient are investigated. 
Results: The results showed the sound absorption coefficient increases by increasing the tea waste weight percent of the polypropylene. 60% increase in tea waste has a special role in the absorption of sound waves at a frequency of 1000 Hz and 2500 to 6300 Hz frequency range as the TW60 N5 sample has the sound absorption coefficient 0.94 and 0.84 in 1000 and 6300 Hz frequencies, respectively. Comparison of the sound absorption coefficient of composite and nanocomposite showed that sound absorptions increase by adding nanoclay to the 5%, at frequencies above 2000 Hz.
Conclusion: Tea waste-based sound absorbers can be used in noise control due to the high acoustic absorption and no harmful effects on human health.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb