Showing 5 results for Fardi
Morad Rezaei Dizgah, Fardin Mehrabian, Mohsen Jani Pour,
Volume 8, Issue 1 (4-2018)
Abstract
Introduction: Job Satisfaction is a perception that improves employees’ productivity, motivation and empowers them. Therefore, recognizing the factors affecting it and paying attention to emotional intelligence can provide the basis for increasing job satisfaction.
The purpose of this study was to investigate the effect of emotional intelligence on job satisfaction considering the mediator role of job burnout, emotional Labor, emotional inconsistency, personality deprivation and deficiency of individual success in the Staff of Guilan University of Medical Sciences
Material and Method: This research used descriptive and cross-sectional method. The study population included 413 staffs from the faculties of Guilan University of Medical Sciences. The sample was determined 200 people using Cochran’s formula. A standard questionnaire was used to collect data. Content validity was done for this questionnaire and also its reliability studied using Cronbach’s alpha coefficient. Descriptive statistics and structural equation modeling were used to analyze the data using Lisrel software.
Result: The results showed that emotional intelligence affects emotional inconsistency, emotional exhaustion, emotional Labor, job satisfaction, deficiency of individual success and deprivation of personality. Also, emotional inconsistency affects on emotional exhaustion, deficiency of individual success, job satisfaction and personality deprivation. In addition, the results show that emotional exhaustion affects deprivation of personality, deficiency of individual success and job satisfaction and finally, the deficiency of individual success affects job satisfaction.
Conclusion: Considering the relationship between job satisfaction with job burnout, emotional intelligence and emotional inconsistency, it would be helpful for managers to implement programs to increase employee satisfaction and self-efficacy and provide a context for reducing job burnout.
Ali Fardi, Mohammad Karkhaneh, Hamidreza Heidari, Abolfazl Mohammadbeigi, Ahmad Soltanzadeh,
Volume 12, Issue 2 (6-2022)
Abstract
Introduction: Methane is one of the most widely used gases in industries with a high flammability potential. This study aimed to evaluate the efficiency of ventilation systems installed on methane valve pits based on hazardous areas classification.
Material and Methods: This study was implemented in a steel industry in Qom Province in 2019. The tools used in this study were a DELTA OHM pitot tube (DO-2003) to measure wind speed, EPA Protocol for equipment leak emission estimates (U.S. Environmental Protection Agency) and IEC-60079-10 for evaluating the safety of ventilation of methane valve pits.
Results: The methane LELm was about 0.0334 kg/m3, and the volume of the release area was approximately VZ = 0.053 m3. The expected leak emissions were within the Vz < 0.1 m3 range. The ventilation system embedded on methane distribution pipelines was not effective for openings with diameters of more than 0.3 mm and the volume of gas inside the valve pits would quickly exceed high ventilation border which might lead to a dangerous accumulation of gas in the valve pits.
Conclusion: Given that a very small opening or leak in gas transmission valves may lead to the formation of an explosive atmosphere, it is essential to monitor methane before entering the valve pit area and performing any operations on valve pits.
Ali Jafari, Mohammad Reza Monazzam Esmaeelpour, Fardin Zandsalimi,
Volume 14, Issue 2 (6-2024)
Abstract
Introduction: A wood-wool cement panel (WWCP) is wood wool combined with Portland cement mortar. This environmentally friendly acoustic material can be used as a thermal insulator and fire-resistance material with desired mechanical properties. This study aimed to determine the mechanism by which WWCP absorbs sound and the effect of production and application parameters on absorption
Material and Methods: The samples were prepared from poplar wood wool and white Portland cement as a binder in two Cement Fiber Ratios (CFR), namely 2:0.7 and 2:0.95, with bulk densities of 400, 500, and 600 Kg/m3 and thicknesses of 2 and 4 cm. Three layers of backing: air, polyurethane foam, and glass wool were examined separately. Acoustic absorption coefficient was measured using an impedance tube based on ISO 10534-2.
Results: The highest increase in the average absorption coefficient due to the increase in thickness was observed for the sample with a density of 400 kg/m3 and CFR = 2: 0.95, equal to 0.3. Increasing the bulk density to 500 kg/m3 for most samples and in the high-frequency range led to rising absorption efficiency. The optimal backing effect was due to the placement of 4 cm of polyurethane foam behind the sample, which in both thicknesses led to an absorption peak with an absorption coefficient higher than 0.95 at frequencies between 400 and 500 Hz. Selected samples showed that painting WWCPs led to a limited drop in absorption coefficients at high frequencies, comparing the before and after painting results with oil-based paints.
Conclusion: Tuning the absorption frequencies of these absorbers can be achieved by altering factors such as the thickness or density. It has been demonstrated that the effects of thickness and bulk density on the sound absorption of WWCP are related to each other. Concerning the CFR values, increasing the density did not significantly affect absorption in the two frequency ranges.
Sajad Zare, Reza Esmaeili, Fardin Zandsalimi,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Cognitive functions play a vital role in how tasks are performed; for this, temporary cognitive and mental dysfunctions could lead to grave consequences, especially when an accurate and prompt response is required. Attention and reaction time to noise are among the most effective exogenous factors on the brain processing mechanism. This study aimed to measure the sustained attention of workers in the steel industry exposed to different sound pressure levels.
Material and Methods: The study was conducted in 4 general stages, including 1- Selecting predictive orientation variables (age, work history, different sound pressure levels); 2- Conducting the Cognitive Performance Test (CPT); 3 Conducting N-BACK Cognitive Performance Test and 4- Modeling cognitive performance changes using model precision methods.
Results: Continuous Performance Test (CPT) results indicated that all three groups’ omission error, commission error, and response time were affected by shift time. All three components increased significantly as the shift ended, decreasing individuals’ cognitive function. Also, the higher noise impact in modeling CPT and N-Back tests indicated reduced workers’ concentration.
Conclusion: These study findings suggested that greater noise weight obtained in test modeling in three-time intervals, i.e., in the beginning, middle, and end of the shift, affected the continuous performance components of the CPT and working memory performance of the N-back test, including workers’ response time and reaction time, with workers’ rate of error increasing and their focus decreasing during the shift.
Mojtaba Zokaei, Milad Abbasi, Mohsen Vahidnia, Mohamad Zarie, Fardin Zndsalimi, Mohsen Falahati,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Nowadays, the statistics prove that the underground construction projects in the country are increasing, as well as the number of accidents arising from the unsafe condition of these projects. The purpose of this study was to create a framework of safety and health risk management in the construction phase of the Tehran Metro Line 7 tunnel, using IoT technology.
Material and Methods: In the first stage, the national safety and health standards, laws and requirements related to the mentioned hazards were collected. In the second stage, the criteria and permissible limits of exposure to occupational hazards were determined. Next, sensors with optical, auditory, gas detection, and visual capabilities connected to the network were examined, and computer programming and comparing sensor information with the specified standards were carried out. Finally, intelligent warning and control systems related to the determined hazards were proposed.
Results: In this study, a combined model of risk management utilizing IoT for controlling and monitoring safety and health hazards such as sound, light, explosive and toxic gases was proposed. According to the model, sensors for detecting the mentioned hazards were determined and coded based on the permissible limit of each of the harmful factors.
Conclusion: This study has shown that by employing specialized IT and safety knowledge and utilizing relevant software and hardware, the concept of the Internet of Things can be utilized in precise monitoring of the concentration levels of flammable and toxic gases, as well as monitoring of physical agents such as noise and light in various workplace, such as metro tunnel construction sites.