Showing 5 results for Ghaljahi
Milad Abbasi, Parvin Nassiri, Roghay’eh Jaffari Talaar Poshti, Seyed Mohammadreza Taghavi , Saeid Aarabi, Rohollah Fallah Madvari, Mohammad Hossein Ebrahimi, Maryam Ghaljahi,
Volume 8, Issue 3 (9-2018)
Abstract
Introduction: Chronic occupational noise exposure may constitute a risk factor for cardiovascular disease for workers. The aim of this study was to investigate the relationship between occupational noise exposure and noise annoyance with blood pressure, serum cholesterol and triglyceride levels in workers of a textile industry.
Material and Method: This cross-sectional study was carried out among 220 employees of Savadkouh textile industry complex in Mazandaran province, Iran in 2017. To achieve the study objectives, the 8 -hour equivalent sound exposure level was measured and the cumulative noise exposure was calculated. Based on noise exposure level, workers were divided into control and case groups. Then, blood pressure was measured and blood samples were collected from each individual for determination of the serum cholesterol and triglyceride levels and they were transfered to the laboratory for further analysis. The noise annoyance scale and socio-demographic questionnaire were used to collect noise annoyance and other background and demographic information, respectively. Finally, Paired t-test, one-way ANOVA and multivariate regression were used to study the relationship between variables using SPSS Version 20.
Result: In total, 159 workers participated in this study considering the inclusion and exclusion criteria. Eighty-three participants were exposed to more than or equal to 85 dBA, and 76 person were exposed to less than 85 dBA noise level, respectively. The results showed that mean blood pressure and cholesterol were significantly different between the control and case groups (P-value< 0.05). Based on multivariate regression results, noise exposure, cumulative noise exposure (CNE) and noise annoyance had a significant effect on blood pressure (P-value< 0.001). Cholesterol was also significantly affected by noise exposure and noise annoyance (P-value< 0.005).
Conclusion: Based on the results of current study, noise can be considered as a risk factor for cardiovascular disease ampong workers. Actually, high intensity noise affect serum cholesterol and blood pressure directly, and may do indirectly by causing noise annoyance which acts as a mediator. Therefore, it seems necessary to conduct a controlled cohort study to investigating the interactions among whole variables of interest.
Milad Abbasi, Siavash Etemadinezhad, Ahmad Mehri, Maryam Ghaljahi, Rohollah Fallah Madvari, Roghayeh Jaffari Talaar Poshti,
Volume 10, Issue 2 (5-2020)
Abstract
Introduction: Although noise characteristics such as intensity and frequency are the main cause of detrimental effects, it is important to pay attention to the personality traits of individuals as the host of adverse health effects. The aim of this study was to investigate the effect of personality traits on sensitivity, annoyance and loudness perception due to exposure to high frequency sound.
Material and method: This interventional and experimental study was carried out among 80 undergraduate and postgraduate students in 2017. First, examinee were exposed to a high frequency noise at 65 dBA for one hour in an acoustic room. Then, to determine amount of annoyance, sensitivity, loudness perception and to investigate personality traits, questionnaire of noise annoyance, noise sensitivity, loudness perception and Eysenck personality inventory was used, respectively. Finally, Chi-square, independent t-test and multivariate analysis of variance (MANOVA) were used to data analyze.
Results: The mean±SD of sensitivity, annoyance and loudness perception were 54.08±7.71, 7.0±1.53, and 2.79±1.13, respectively in this study. The mean scores of sensitivity, annoyance and loudness perception were significantly different in terms of personality traits, so that their average was higher in the neurotic and introverted. Based on MANOVA test results, personality traits had a significant effect on sensitivity, annoyance and loudness perception of individuals. In a way, the neuroticism and introversion had the greatest effect on the sensitivity and annoyance, respectively.
Conclusion: The results of this study showed that personality traits such as introversion and neuroticism can affect the sensitivity, annoyance and loudness perception of individuals.
Maryam Ghaljahi, Elnaz Rahimi, Azam Biabani, Zahra Beigzadeh, Farideh Golbabaei,
Volume 13, Issue 2 (6-2023)
Abstract
Introduction: Numerous studies have been conducted on the development of modern insulators, including nano-insulators. However, a comprehensive study has yet to be performed to review and investigate the thermal properties of these insulators. Consequently, this study aimed to examine the effect of nanomaterials on thermal insulation function.
Material and Methods: In this review, articles were searched for in English databases (PubMed, Web of Science, and ScienceDirect), Persian databases (Magiran, SID), and Google Scholar. The keywords used in the search were Nano Material, Nano Insulation, Thermal Insulation, Thermal Insulator Stability, and Thermal Conductivity in both English and Persian.
Results: Of the 4068 studies identified through search databases, 15 were selected according to the entry criteria. Among the studies, the three types of silicone, composite, and aerogel insulation had the highest frequency (each 26.67%), and SiO2 nanoparticles were the most prevalent nanomaterial (26.67%). According to the studies, the type of nanomaterial used in insulation will improve its properties such as thermal resistance, mechanical strength, dielectric strength, tensile strength, elasticity, and hardness.
Conclusion: The results of this study showed that using nanotechnology could be an effective step in improving the properties of insulation materials, the most important of which is increased thermal resistance. Moreover, nanotechnology insulators can prevent thermal energy loss, reduce costs, and provide safety and comfort.
Elnaz Rahimi, Azam Biabani, Maryam Ghaljahi, Farideh Golbabaei,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Workers who work in warm situations need clothes with better thermal regulation. Nowadays, improving the thermal regulation properties of cotton fabric by treating it with phase change materials (PCMs) has been considered. The type of fabric plays an important role in providing thermal comfort. Cotton fabric is the most popular raw material in the textile industry due to its distinctive features. Therefore, this systematic review aims to investigate the effects of PCM nanoencapsulation in commonly used cotton fabrics, including morphology, thermal properties, thermal stability, tensile strength, abrasion resistance, leakage, water absorption, washing ability, and breathability of the fabric, related challenges, and future research trends.
Material and Methods: This research was conducted with the papers obtained from the systematic search in Science Direct, Web of Sciences, Scopus, and PubMed databases. Keywords “nanoencapsulated phase change materials”, “nanoenhanced phase change materials”, “cotton”, “cotton fabric”, and “cotton textiles” were used.
Results: Of the 1251 studies identified through search databases, 13 were selected according to the entry criteria. The results revealed that in all the studies, PCM nanocapsules were successfully synthesized and inserted into the cotton fabric, improving the fabric’s thermal properties. Most studies used in situ polymerization and mini-emulsion polymerization for nanoencapsulation. The pad-dry-cure method was also widely used for applying nanocapsules to cotton fabric.
Conclusion: This systematic review showed that synthesized nanocapsules of phase change materials and applied them to cotton fabric can improve the thermoregulating properties of the fabric. It is suggested to expand the research to design thermoregulating clothes made from treated fabrics and investigate their cooling performance.
Maryam Ghaljahi, Leila Omidi, Ali Karimi,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Safety in process industries is of paramount importance, as these industries typically deal with hazardous chemicals and complex processes that can lead to irreparable consequences in the event of accidents. The present study aims to evaluate domino effects and analyze the vulnerability of storage tanks using graph theory and Bayesian networks in a process industry. This approach can help identify system vulnerabilities and facilitate the prediction of potential accidents, ultimately leading to improved safety measures.
Material and Methods: In this study, after collecting initial information related to the location of storage tanks and determining accident scenarios, the tanks under investigation were selected based on the type of stored materials and their layout, with input from experts. These tanks were modeled as nodes in a graph, and the probability of accident spreading among them was represented as edges in the graph based on the amount of heat radiation. Additionally, for modeling domino effects and analyzing vulnerability, graph theory and Bayesian networks were employed.
Results: Based on the target tanks related to the pool fire scenario, domino effects in the tanks were identified and modeled as a theory graph. Tank number 4 was determined to be the most influential and susceptible tank in the spread and initiation of domino effects, with the highest betweenness index (0.2381), outcloseness index (0.35211), and incloseness index (0.3663). Additionally, based on the allcloseness index, the most likely sequence of the tank involvement in fires caused by domino effects was identified.
Conclusion: In order to reduce the likelihood of exacerbating domino effects, modeling the effects using Bayesian networks and graph theory is proposed; the results can also be applied to optimize fire suppression strategies. Additionally, vulnerability analysis through graph theory and the assessment of tanks regarding their potential for fire initiation and spread can be beneficial in managing the risks associated with domino effects.