Search published articles


Showing 8 results for Khavanin

A. Khavanin, K. Azrah, R. Mirzaei, S. B. Mortazavi, H. Asilian, A. Soleimanian,
Volume 4, Issue 2 (7-2014)
Abstract

Introduction: Whole body vibration occurs when human is on a vibrating surface and the vibration influences parts of the body which are far from the contacted part. Up to now, various health-related problems due to whole body vibration have been reported, including back pain, sciatica, gastrointestinal problems, genital problems and hearing impairment. In the present research, vibration was measured about 2000 minutes in 23 train of 4 active lines of Tehran metro in order to determine the rate of subway drivers’ exposed to whole body vibration.
.
Material and Method: Vibration meter and SVAN 958 analyzer, made by Svantek company, were utilized for measuring the whole body vibration. The level of weighted r.m.s acceleration for each axis, the combination of axes, peak factor, VDV and other common exiting ratios in the standard were measured and calculated according to ISO 2631-1.
.
Result: Findings showed that according to Basic method drivers exposure to vibration is less than the lowest value of health guide critical region (<0.45m/s2). However, based on Vibration Dose Valuation (VDV), the exposure of 12 cases were higher than the lowest value (<8.5 m/s1.75) and only 11 cases were lower than the mentioned amount.
.
Conclusion: Investigation of the result obtained from Basic method and VDV method manifested different amounts of vibration exposure in a way that VDV predicts higher level of risk, compared to basic method. The results shows that some presented indicators can not presented the safe zone in human vibration evaluations.


Vida Zaroushani, Ali Khavanin, Ahmad Jonidi Jafari, Seyed Bagher Mortazavi, Farahnaz Khajenasiri,
Volume 6, Issue 4 (12-2016)
Abstract

Introduction: Due to the importance of engineering controls for prevention of microwave exposure, this study was conducted to design and constract a novel electromagnetic shielding and also to examine the factors influencing shielding efficacy in X band frequency range.

Material and Method: This study used Resin Epoxy as matrix and nano-Nickel Oxide as filler to prepare the composite plates with three different thicknesses (2,4, and 6 mm) and four different weight percentages (5,7,9 and 11). The fabricated composites characterized using X-ray diffraction and Field Emission Scanning Electron microscopy. Shielding effectiveness, percolation depth, and percolation threshold were measured using Vector Network Analyzers. Thermal Gravimetric Analysis was conducted to study the temperature influence on weight loss for fabricated composites.

Result: A maximum shielding effectiveness value of 84.18% was obtained for the 11%-6mm composite at 8.01 GHz and the 7%-4mm composite exhibits a higher average of shielding effectiveness of 66.72% at X- band frequency range. The 4mm thickness was optimum and critical diameter for composite plates; and percolation depth was obtained greater than thickness of composites. However, increasing the nickel oxide content did not show noticeable effect on the shielding effectiveness. Thermal Gravimetric Analysis showed that the study shields were resistant to temperature up to 150 °C without experiencing weight loss. What is more, the results indicated that Nickel oxide Nano particles had desirable distribution and dispersion in epoxy matrix and percolation threshold was appeared in low content of nickel oxide nanoparticles.

Conclusion: A novel electromagnetic shield using low thickness and few content of nanoparticle with noticeable efficacy was properly designed and constructed in the field of occupational health. In addition, this shield has low cost, easy to manufacture, resistance to wet/corrosion, and low weight. Epoxy/nickel oxide composite can represents a new generation of electromagnetic shielding, which is considered as a promising candidate for occupational protection against microwave exposure. It is recommended that future studies improve the shielding effectiveness by decreasing the percolation depth and investigate the efficacy of the fabricated shield in the workplaces.


Ali Khavanin, Ahmad Jonidi Jafari, Ali Safari Variani, Vida Zaroushani,
Volume 8, Issue 1 (4-2018)
Abstract

Introduction: Nowadays, demand for protection against radar radiation using electromagnetic shielding is on the rise.  Double-layer or multilayer shielding were devised in order to improve the single layer electromagnetic shielding properties. In this study, we tried to prepare a new double-layers electromagnetic shield and investigate the effect of structural factors such as thickness, similarity in layers and mixing time on the shielding effectiveness for double-layers shields.

Material and Method: This study used the Resin Epoxy EI-403 and Nickel Oxide nanoparticles to prepare single layer shields by casting method (with two different mixing time: 10 and 66 min) in 2, 4 and 6 mm thicknesses and 7 wt% Nickel oxide nanoparticles. Then, in order to prepare double-layers shields, single-layer shields were placed on each other without air space. Scattering parameters were measured by a Vector Network Analyzer (V.N.A) and shielding effectiveness were calculated in X-band radar frequency range.

Result: The highest and the lowest averages of shielding effectiveness in single layer shields were 84.14% and 46.05%, respectively. These values were 66.34% and 41.99 %, in double layers electromagnetic shields. The averages of shielding effectiveness values in the double-layers shields (with 10 min in mixing time) in 6, 8 and 10 mm in thickness were 41.99%, 45.45% and 43.25%, respectively. These values in 66 min in mixing time, increased to 54.30%, 62.07% and 66.34%, respectively.

Conclusion: In this study, the shielding effectiveness in double-layers were less than single layer electromagnetic shields. Although the increase in mixing time improved the shielding effectiveness of both single and double layer shields, it could not increase the shielding effectiveness in double layer shields in comparison with single layer. Also, the increase in mixing time in double-layer shields showed that shielding effectiveness decreased with increasing thickness in these shields. Also, it was seen that using a similar single-layer shield in the structural of a double-layer shield led to an increase in skin depth and multi reflections .It finally reduced the shielding efficiency in double layer. It is suggested that in the future, other studies be conduct to improve the shielding effectiveness in these electromagnetic shields.


Farshad Nadri, Ali Khavanin, Farahnaz Khajehnasiri, Masoud Ghanbari Kakavandi, Zohreh Mazaheri,
Volume 9, Issue 2 (6-2019)
Abstract

Introduction: Due to the high prevalence of noise and vibration in workplaces and focused of Previous studies on the auditory and musculoskeletal effects of these two harmful factors, The aim of this study was to determine the protective effect of cinnamon extract on sex hormones levels, body weight and testis weight of adult rats exposed to noise and vibration.  
Material and Methods: 64 male Wistar rats were randomly assigned to eight groups of 8 each. Group 1; treated with distilled water (Control), group 2; treated with 75 mg kg-1 cinnamon extract, group 3; exposed to noise(100 dB), 8 h/day(23:00-7:00) and group 4; exposed to noise and treated with 75 mg kg-1 cinnamon extract, group 5; exposed to vibration(1 m/s2), 8 h/day (23:00-7:00), group 6; exposed to vibration and treated with 75 mg kg-1  cinnamon extract, group 7; exposed to noise and vibration, 8 h/day (23:00-7:00) and group 8; exposed to noised and vibration and treated with 75 mg kg-1  cinnamon extarct by gavage. Fifty days later, the rats were anesthetized, blood samples to determine the amount of sex hormones were collected, and the testis was removed for weight determination. Data was analyesd by SPSS.
Results: Noise stress decreased the level of three hormones (LH, FSH and Testosterone) while vibration decreased testosterone levels merely (P<0.05).Combined exposure to noise and vibration was able to create a significant difference with control group in testosterone and LH hormone levels (P<0.05). The three factors of noise, vibration and combine of them were able to create a significant difference with control group in final body weight (P<0.05). Cinnamon extract increased the level of sex hormones compared to control group (P<0.05).
Conclusion: Cinnamon extract (due to antioxidant properties) has a protective effect on sex hormone levels in rats exposed to noise and vibration. It’s suggested further studies to determine the mechanism of cinnamon extract (in different doses) in human and animal samples.
Roohalah Hajizadeh, Ali Khavanin, Ahmad Jonidi Jafari, Mohammad Barmar, Somayeh Farhang Dehghan,
Volume 9, Issue 4 (12-2019)
Abstract

Introduction: Nowadays multiple techniques have been developed to noise control. One the most important way is the control based on sound absorption and insulation. The purpose of current study was to improve the acoustic properties of soft polyurethane foam regarding combined sound absorption and insulation characteristics.
Materials and Methods: Polyacrylonitrile and polyvinylidine fluoride nanofibers are fabricated using solution electrospinning technique. Nano-clay particles (montmorillonite, 1-2 nm in diameter) were purchased from Sigma-Aldrich, Inc. Experimental design was prepared using Design-Expert ver.7 software. The 50 samples of nanocomposites were fabricated on the basis of experimental run. The measurement of sound transmission loss and the absorption coefficient was conducted using BSWA SW477 550005 Impedance Tubes according to the standard ASTM E2611-09 and ISO10534-2, techniques. Response surface methodology (RSM) with central composite design (CCD) was applied to optimize the conditions to produce nanocomposites for each frequency range.
Results: The polymer nanocomposites had the higher combined sound transmission loss and the absorption coefficient than pure polyurethane foam. Their combined transmission loss and the absorption coefficient in the low, middle and high frequency range was 02.02, 1.91 and 2.53 times higher than the pure polymer. The combined transmission loss and the absorption coefficient in all frequency ranges have been increased by increasing the thickness of the composites and air gap. At a thickness of 2 cm, the combined composites, sound transmission loss and the absorption coefficient increased with the increase of content of both nanofibers. The highest combined transmission loss and the absorption coefficient was observed when mass fraction of nanofibers was in at its maximum level.
Conclusion: This study showed that the adding nano-clay particles, polyacrylonitrile and polyvinylidine fluoride nanofibers to polyurethane foam can lead to increased sound transmission loss and the absorption coefficient. The obtained optimized nanocomposite can be applied to noise control where requiring the absorption as well as reduction of sound transmission.

Ehsan Rezaieyan, Ebrahim Taban, Seyyed Bagher Mortazavi, Ali Khavanin, Hasan Asilian, Elham Mahmoudi,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Micro perforated panel (MPP) absorbents promise the next generation of sound absorbers as they have significant advantages over other porous adsorbents. In this study, we will investigate the acoustic performance of MPP absorbents made of biodegradable polylactic acid composite reinforced with natural corkwood fibers (PLA/Corkwood) by 3D printing technology.
Material and Methods: First, the effective dimensional characteristics of the parameters were determined, then, all of the samples were fabricated by the Zortrax M200 3D-Printer using the FDM method. The normal incidence sound absorption coefficient of the samples was measured using an acoustic impedance tube according to ISO 10534-2 in the frequency range of 64 to 1600 Hz. Then the effect of four geometric parameters, including hole diameter, panel thickness, perforation ratio, and air gap depth, on the absorption coefficient was studied.
Results: The findings show that the SL-MPP 12 absorbent has the highest average sound absorption coefficient (SACA) with a value of 0.28, so that at a frequency of 804 Hz it has the highest sound absorption equal to 0.91. The parametric study found that as the hole diameter increased, the values of peak adsorption and average absorption coefficient were decreased. Increasing the MPP thickness causes the absorption peak to move towards the lower frequency range. Decreasing the perforation ratio increases the peak absorption values and the average sound absorption, and the frequency with the highest absorption also moves towards the higher frequency range. The resonant frequency also depends on the depth of the air gap behind the screen. Changes in air gap depth from 30 mm to 70 mm reduced the resonant frequency by more than 35%.
Conclusion: Using 3D printing technology, sustainable MPP can be fabricated with more quality and in less time than traditional methods such as mixing and heat pressing.

Kaykāvus Azrah, Ali Khavanin, Majid Shahi, , Mahbubeh Parsaeian, Mohammad Reza Monazzam,
Volume 12, Issue 4 (12-2022)
Abstract

Introduction: This study aims to determine the amount of hand-arm vibration transmitted from heavy electric destruction tools and the effect of using chisel with different lengths and shapes when demolishing concrete surfaces.
Material and Methods: To evaluate the magnitude of hand-arm vibration on the left and right handles of two powerful electric demolition hammers commonly applied in Iranian construction work and urban services, 323 measurements were made (RONIX and NEC). The demolition procedure was carried out by two experienced users on 49 concrete slabs of the same grade (20 C) with thicknesses of 10 and 15 cm while utilizing standard tools, such as hammers with two different chisel head shapes (flat and point) and lengths (40 and 60 cm). Utilizing two SVANTEK vibration meters concurrently on each hammer handle, measurement and evaluation were according to the ISO 5349:1, 2 procedures.
Results: The mean effective (frequency weighted root mean square) acceleration (awrms) for the Vector Sum Values (VSV) in the hammer handles were 15.71 m/s2. The primary vibrational axis transmitted to the handle of tool was the vertical axis, at 13.60 m/s2. When employing flat and point chisel, the mean awrms were 16.59 m/s2 and 14.82 m/s2, respectively. The difference between the results of 60 and 40 chisel was a little more than 2m/s2. The dominant and harmonic frequencies of the tools were generally in the range of 25 Hz to 80 Hz and 200 Hz to 400 Hz
Conclusion: The mean results generally indicated that point chisel with shorter lengths (40 cm) accelerates at a lower rate than flat chisel with longer lengths (60 cm). In the frequency range below 40 Hz, the RONIX hammer produced a larger acceleration than the NEC hammer indicating that the NEC hammer had a higher safety competitive advantage compared to the another hammer.
Ali Jafari, Mohammad Reza Monazzam, Ali Khavanin, Maede Lashgari, Seyed Ali Ghoreyshi,
Volume 13, Issue 1 (3-2023)
Abstract

Introduction: Wood-Wool Cement Panels (WWCPs) are environmentally friendly sound absorbers also used as heat, energy, and moisture insulators. WWCPs have suitable mechanical properties due to using Portland cement and wood strands as raw materials. In this study, the acoustic performance of WWCP absorbents will be investigated.
Material and Methods: The mixed raw materials were molded under pressure through a hydraulic press to fabricate the WWCP samples. Samples were demolded after 24 hours. Samples were created with two thicknesses of 2 and 4 cm and three bulk densities of 400, 500, and 600 kg/m3 to examine the impact of thickness and bulk density on the acoustic absorption coefficient. The sound absorption coefficients were determined as a function of frequency for two frequency ranges: low (63-500 Hz) and high (630-6300 Hz).
Results: In the low-frequency range, increasing the thickness from 2 to 4 cm increased the absorption coefficient at 500 Hz by 0.16 and 0.23 for densities of 400 and 500 kg/m3, respectively. Increasing the thickness added an absorption peak and increased the value of these absorption peaks to 0.9 in the high-frequency range. When the bulk density of the 4-cm-thick samples increased from 400 to 600 kg/m3, the low-frequency absorption peak increased by 0.33. In the high-frequency range, the same density change increased the absorption peak by 0.26 for the 2-cm-thick sample.
Conclusion: Increasing the thickness of WWCP improves both its high- and low-frequency acoustic absorption coefficients. In addition, increasing the bulk density to approximately 500 kg/m3 boosts the sound absorption efficiency in both frequency ranges.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb