Search published articles


Showing 2 results for Monazzam Esmaeelpour

Vida Rezaei-Hachesu, Hassan Haddadzade Niri, Saeid Farahani, Mohammad Reza Monazzam Esmaeelpour,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: Colored noises with acoustic and psychoacoustic characteristics have several biological effects on human or animal health. While studies on auditory effects focus on noise’s physical aspects, its psychoacoustic aspects can also result in health and safety risks. Therefore, this study aims to investigate frequency-based damages due to exposure to colored noise in an animal model.
Material and Methods: Twenty-four male Wistar rats were randomly divided into four groups (6 in each group). The groups included the control (no exposure) and three exposure groups (white, pink, and violet). The rats were exposed to 110 dB SPL for 4 hr/day for 14 consecutive days. Auditory brainstem responses (ABR) with click and tone-burst stimuli were recorded one day before (baseline), 7, and 14 days after exposure. Statistical analyses were conducted using ANOVA and repeated measures ANOVA.
Results: There was a statistically significant increase in ABR threshold values in exposure groups (p<0.05). Hearing threshold shifts in the white noise group showed a homogeneous pattern, violet noise showed an increasing pattern, and pink noise showed a decreasing pattern in low frequencies and a homogeneous pattern with increasing frequency. The highest shift in hearing threshold was observed in exposure groups from day 0 to 14. Additionally, the shift in hearing threshold in the second week was less than in the first one.
Conclusion: The current study observed that noise’s power spectral density affected hair cells’ damage severity. Accordingly, pink noise causes less damage to the cochlea compared to white and violet. Over time after noise exposure, cochlear pathogenesis gradually decreases and hair cell lesions become stable.
Ali Jafari, Mohammad Reza Monazzam Esmaeelpour, Fardin Zandsalimi,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: A wood-wool cement panel (WWCP) is wood wool combined with Portland cement mortar. This environmentally friendly acoustic material can be used as a thermal insulator and fire-resistance material with desired mechanical properties. This study aimed to determine the mechanism by which WWCP absorbs sound and the effect of production and application parameters on absorption
Material and Methods: The samples were prepared from poplar wood wool and white Portland cement as a binder in two Cement Fiber Ratios (CFR), namely 2:0.7 and 2:0.95, with bulk densities of 400, 500, and 600 Kg/m3 and thicknesses of 2 and 4 cm. Three layers of backing: air, polyurethane foam, and glass wool were examined separately. Acoustic absorption coefficient was measured using an impedance tube based on ISO 10534-2.
Results: The highest increase in the average absorption coefficient due to the increase in thickness was observed for the sample with a density of 400 kg/m3 and CFR = 2: 0.95, equal to 0.3. Increasing the bulk density to 500 kg/m3 for most samples and in the high-frequency range led to rising absorption efficiency. The optimal backing effect was due to the placement of 4 cm of polyurethane foam behind the sample, which in both thicknesses led to an absorption peak with an absorption coefficient higher than 0.95 at frequencies between 400 and 500 Hz. Selected samples showed that painting WWCPs led to a limited drop in absorption coefficients at high frequencies, comparing the before and after painting results with oil-based paints.
Conclusion: Tuning the absorption frequencies of these absorbers can be achieved by altering factors such as the thickness or density. It has been demonstrated that the effects of thickness and bulk density on the sound absorption of WWCP are related to each other. Concerning the CFR values, increasing the density did not significantly affect absorption in the two frequency ranges.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb