Search published articles


Showing 2 results for Vafa

Asghar Ghahri, Farideh Golbabaei, Leila Vafajoo, Seyed Mohammad Mireskandari, Mehdi Yaseri, Seyed Jamaleddin Shahtaheri, Faranak Najarian,
Volume 8, Issue 2 (6-2018)
Abstract

Introduction: Anesthetic gases used in hospitals include N2O and halogenated hydrocarbons (such as sevoflurane) which can be released through leakages and uncontrolled exhalation by the patient into the ambient air of clinical staff. These gases have greenhouse effect and damage to the ozone layer and serious risks such as reproductive, preterm delivery and fetal abnormalities and increased spontaneous abortion on the health of operating room personnel. Therefore, removal of these gases from the workplaces is essential especially in the treatment centers. The purpose of the present study was to investigate the adsorption of sevoflurane from air by using activated Charcoal and also the effect of acid modification on its performance.
 

Material and Method: In this study, two adsorbents of unmodified and modified activated charcoal with nitric acid were used to remove sevoflurane. After preparation, the adsorbents were characterized using XRD, FT-IR, BET and FE-SEM methods. After characterization, the breakthrough and adsorption capacity of sevoflurane on both adsorbents were determined using the modified wheeler equation.
 

Result: The results of characterization showed that acid modification did not affect the crystalline structure of activated charcoal and increased the adsorption and microporous of acid-modified activated charcoal in comparison with unmodified activated charcoal. It also reduces surface functional groups of the activated carbon. The results of determination of adsorption capacity indicated that the adsorption capacity of modified activated charcoal was improved in comparison with unmodified activated charcoal.
 

Conclusion: The results demonstrated that both adsorbents have the ability to absorb sevoflurane and modified activated charcoal have a better performance in this process. This effect may be due to the surface area of adsorption and volume of micro pores more than the unmodified activated charcoal.


Iraj Alimohammadi, Athena Rafieepour, Leila Hosseini Shafiei, Mohammadreza Vafa, Nargess Moghadasi, Shahram Vosoughi, Jamileh Abolghasemi, Rana Ghasemi,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: Obesity and overweight are major global health challenges. One of the bad effects of noise that has been recently expressed is the effect of noise on obesity. This study aimed to investigate the effect of high-frequency noise exposure on obesity, food intake, and abdominal visceral fat in adult male guinea pigs.
Material and Methods: The animals in this study were 24 adult male guinea pigs randomly divided into 3 groups (control and two case groups). Each case group was separately exposed to high- frequency white noise with sound pressure levels in 65 dB and 85 dB for 5 days per week in 30 days. The food intake was measured daily. The weight of animals was measured at the start and on days 6, 12, 18, 24, and at the end of exposure period. The abdominal visceral fat was extracted and weighted at the end of the study period. The data were assessed using SPSS V.22 software.
Results: ANOVA analysis showed that exposure to high-frequency noise at 65dB and 85dB had a significant effect on weight gain, food intake, and abdominal visceral fat weight (P-value< 0.05) which in the group exposed to the noise with 65 dB was more than other groups.
Conclusion: Based on this study, exposure to high-frequency noise may be an effective factor in obesity and increasing abdominal visceral fat. Further studies are needed to investigate the mechanism affecting weight status following noise exposure.
 

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb