Samaneh Salari, Azar Soltani, Maedeh Nadim Qaziany, Ali Karimi,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Fire safety in healthcare centers is crucial due to the limited evacuation capacity of the occupants and the necessity of not disrupting the operation in these centers. In this study, the fire risk of a public hospital was evaluated using the Fire Risk Assessment Method for Engineering (FRAME). Additionally, the factors affecting fire safety in the hospital were analyzed quantitavely, and fire control strategies were presented.
Material and Methods: First, the fire risk assessment checklist was filled in all the hospital departments. Then, the values of the factors affecting fire safety were obtained. In the next step, the fire risk for the building, occupants and activities were estimated using Excel software-FRAME. Finally, control strategies and intervention measures were presented based on the value of these factors.
Results: In the hospital under study, 22% of the departments posed an undesirable fire risk to the building and its property. On the other hand, 90% of the departments had risk levels that were undesirable for the occupants. The results of the initial risk (R0) showed that a balance between potential fire risk and risk acceptance can be established by implementing manual fire extinguishing systems and automatic detectors in all departments.
Conclusion: ased on the condition of the hospital studied, a balance between potential fire risk level and risk acceptance level was not established. Therefore, there is a need for fire control measures, especially fire safety measures for the occupants. The results of this study can be useful for readers and experts in interpreting fire risk assessments and presenting detailed control measures based on the risk assessment and the value of the parameters.
Soqrat Omari Shekaftik, Jamal Biganeh, Maedeh Hosseinzadeh, Hamidreza Jafari Nodoushan, Neda Mehrparvar,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Workplaces often contain potential risks, such as exposure to toxic chemicals. Conducting a thorough health risk assessment helps employers recognize these dangers and implement necessary controls. In the 20th century, modern risk assessment frameworks began to be established with the rise of public health agencies.
Material and Methods: The present study is a narrative review. In order to obtain necessary information, Persian and English texts were searched in Web of Science, PubMed, Scopus, SID and Magiran databases. Keywords such as “health risk assessment”, “chemicals” and “nanomaterials” were used in this study.
Results: Both quantitative and qualitative health risk assessments play critical roles in occupational health, with each method providing different levels of depth and accuracy depending on the situation. EPA Model, Monte-Carlo Simulation, Physiologically Based Pharmacokinetic (PBPK) Modeling, Quantitative Structure-Activity Relationship (QSAR) Models, Probabilistic Risk Assessment (PRA), Life Cycle Impact Assessment (LCIA), and Biologically Based Dose-Response (BBDR) Models, are among the most important quantitative methods for assessing the health risk of chemicals. COSHH Model, ICCT Model, ICMM Model, Australian Model, and Romanian Model, are the most important qualitative methods for health risk assessment of chemicals. In addition to the quantitative and qualitative methods, semi-quantitative methods like Singapore Model, LEC Method, and SEP Model, have also been proposed for assessing the health risk of chemicals. The preference for qualitative over quantitative methods in the risk assessment of activities involving nanomaterials stems from substantial uncertainties, limited data availability, and the unique and complex behaviors of nanomaterials in the workplaces.
Conclusion: Overall, the evolution of health risk assessment methods reflects a continuous drive towards greater accuracy, reliability, and relevance. As we continue to innovate and expand our knowledge, the field is well-positioned to address the complex and evolving landscape of chemical and material risks, ensuring the protection of human health and the environment.