Showing 24 results for Heat Stress
Davood Afshari, Maryam Nourollahi-Darabad, Gholam-Abbas Shirali,
Volume 11, Issue 4 (12-2021)
Abstract
Introduction: Heat stress is a critical problem in hot industries, especially in incredibly hot climates. It can greatly impair the work process and put the health of workers at risk. This study aims to investigate the applicability of the WBGT index in determining the allowable working time in very hot weather conditions in one of the steel industries in Ahvaz.
Material and Methods: This study was conducted in different sectors of a steel industry in Ahwaz. The physiological parameters of sixty workers working in different parts of the industry were evaluated. Environmental variables and the Wet-Bulb globe temperature (WBGT) Index were also simultaneously measured during work shifts. The acceptable work time was calculated based on the reserve heart rate (RHR) and the WBGT index.
Results: The heat stress index among all occupational groups, based on the WBGT index, was incredibly high and surpassed the recommended level (P<0.05). The statistical test results also indicated a significant difference between the two indices in predicting the adequate work time at different work stations (P <0.05).
Conclusion: The current study results revealed that using the WBGT index for assessing and managing the risk of heat exposure in a hot climate may not have sufficient reliability and performance. Consequently, it is recommended to use optimal indices based on environmental and physiological assessments in a hot climate in order to monitor and control the heat stress associated with heat exposure.
Saeid Yazdanirad, Farideh Golbabaei, Amir Hossein Khoshakhlagh, Vali Sarsangi, Mehdi Yaseri, Seyed Mahdi Mousavi,
Volume 12, Issue 1 (3-2022)
Abstract
Introduction: Prevention of heat-related diseases requires the participation of the workers. For this reason, the aim of this study was the development and validation of the tools for evaluating awareness and practice related to heat stress among the workers of warm workplaces.
Material and Methods: The various items and factors related to the awareness and practice of the workers were identified by the literature review. Then, several questions for evaluating these items were designed. In the next step, the reliability and validity of the questionnaires were appraised using calculating the content validity ratio (CVR) and content validity index (CVI), and Cronbach’s alpha coefficient, respectively. After that, these questionnaires were completed by 2338 employees of six industries in various regions of Iran. Finally, collected data were analyzed using SPSS software.
Results: In total, 77 questions, including 53 questions on awareness and 24 questions on practice in six groups of water and beverages, food, snacks and additives, heat exchange, thermal strain risk factors, clothing and heat protection equipment, and heat-related disorders and body reactions, were designed. The values of content validity index (CVI) of remained questions in the questionnaires of awareness and practice were equal to 0.954 and 0.824, respectively. The values of Cronbach’s alpha coefficients of these questionnaires were calculated by 0.755 and 0.716, respectively. The values of the chi-square divided by degrees of freedom (CMIN/DF) and root mean square error of approximation (RMSEA) in the construction of the awareness questionnaire were computed as 4.58 and 0.079, respectively. These values in the construction of the practice questionnaire were calculated by 2.33 and 0.084, respectively.
Conclusion: The results showed that the designed questionnaires had appropriate reliability and validity and could be used to evaluate the awareness and practice in warm workplaces.
Farough Mohammadian, Mohsen Fallahati, Milad Abbasi, Mojtaba Zokaei,
Volume 13, Issue 3 (9-2023)
Abstract
Introduction: Many industries have multiple factors harmful to health, leading to simultaneous exposure of these factors to each other. Noise is one of the most common physical parameters in the work environment. On the other hand, heat is also increasing due to various energy processes in industries. Therefore, this study was conducted with the aim of determining changes in physiological parameters and visual-auditory attention in acute exposure to heat and noise.
Material and Methods: In this experimental study, 72 individuals (36 men and 36 women) aged between 23 and 33 years participated according to the inclusion criteria. In total, 12 different test modes were performed (3 temperature levels and 4 noise pressure levels). The test was conducted for each person in 4 steps during a specific day. The duration of exposure to each condition was half an hour, and a half-hour rest was given between each test condition. Saliva samples of each subject were collected before and immediately after exposure to noise and heat. Also, The Integrated Visual and Auditory (IVA) was recorded by the participants simultaneously.
Results: The results of combined exposure to noise and heat on visual and auditory attention showed that only two modes of combined exposure, SPL95+WBGT34 and SPL95+WBGT29, caused a significant increase (P < 0.05) in mental workload and a significant decrease (P < 0.05) in visual and auditory attention. In addition, the results showed that independent exposure to noise at the levels of 85 and 95 dB and exposure to heat at higher temperature levels of 34 and 29 degrees Celsius cause a significant increase (P < 0.05) in salivary cortisol after exposure. The results of the effect of combined exposure to noise and heat on salivary cortisol showed that three experimental modes of combined exposure (SPL85+WBGT34, SPL95+WBGT29, and SPL95+WBGT34) caused a noticeable and significant (P<0.001) increase in salivary cortisol.
Conclusion: Indeed, salivary cortisol can be recommended as a physiological index to evaluate noise and heat exposure. It’s also noteworthy that salivary cortisol is more affected by noise and heat exposure than cognitive performance.
Elnaz Rahimi, Azam Biabani, Maryam Ghaljahi, Farideh Golbabaei,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Workers who work in warm situations need clothes with better thermal regulation. Nowadays, improving the thermal regulation properties of cotton fabric by treating it with phase change materials (PCMs) has been considered. The type of fabric plays an important role in providing thermal comfort. Cotton fabric is the most popular raw material in the textile industry due to its distinctive features. Therefore, this systematic review aims to investigate the effects of PCM nanoencapsulation in commonly used cotton fabrics, including morphology, thermal properties, thermal stability, tensile strength, abrasion resistance, leakage, water absorption, washing ability, and breathability of the fabric, related challenges, and future research trends.
Material and Methods: This research was conducted with the papers obtained from the systematic search in Science Direct, Web of Sciences, Scopus, and PubMed databases. Keywords “nanoencapsulated phase change materials”, “nanoenhanced phase change materials”, “cotton”, “cotton fabric”, and “cotton textiles” were used.
Results: Of the 1251 studies identified through search databases, 13 were selected according to the entry criteria. The results revealed that in all the studies, PCM nanocapsules were successfully synthesized and inserted into the cotton fabric, improving the fabric’s thermal properties. Most studies used in situ polymerization and mini-emulsion polymerization for nanoencapsulation. The pad-dry-cure method was also widely used for applying nanocapsules to cotton fabric.
Conclusion: This systematic review showed that synthesized nanocapsules of phase change materials and applied them to cotton fabric can improve the thermoregulating properties of the fabric. It is suggested to expand the research to design thermoregulating clothes made from treated fabrics and investigate their cooling performance.