Showing 30 results for azam
Kourosh Sayehmiri , Marzieh Beigom Bigdeli Shamloo, Marzieh Khataee, Forghan Rabiei Fakhr, Milad Azami,
Volume 6, Issue 3 (9-2016)
Abstract
Introduction: Lead exposure is considered as a global health problem. The irreparable harmful effects of this heavy metal on human have been proven in various studies. Comparing to general population, workers in related industries are more exposed to lead. Several studies have investigated lead occupational exposure and its biological evaluation in Iran; however there is no overall estimate. Thus, the present study was conducted to determine the occupational exposure to lead and its biological evaluation in Iranian workers, using systematic review and meta-analysis.
Material and Method: This study was carried out based on information obtained from databases including Magiran, Iranmedex, SID, Medlib, Trials Register, Scopus, Pubmed, Science Direct, Cochran, Embase, Medline, Web of Science, Springer, Online Library Wiley, and Google Scholar from 1991 to 2016, using standard key words. All of the reviewed papers which met the inclusion criteria have been evaluated. Data combination was performed according to Random Effects Model using Stata software version 11.1.
Result: In the 34 qualified studies, the mean blood lead level (BLL) concentration in Iranian workers was estimated 42.8µg/dl (95% CI: 35.15-50.49). The minimum and maximum BLL were belonged to west (28.348µg/dl) and center (45.928µg/dl) regions of Iran, respectively. Considering different occupations, the lowest mean value was reported in textile industry workers (12.3 µg/dl), while the highest value was for zinc-lead mine workers (72.6 µg/dl). Mean breathing air lead level of Iranian workers reported in 4 studies was estimated 0.23 mg/m3 (95% CI: 0.14-0.33).
Conclusion: According to the high concentration of BLL and breathing air, it is recommended to increase protective measures and frequent screening. Scheduled clinical and paraclinical examination should also be performed for workers.
Javad Sajedifar, Amir Hosein Kokabi, Kamal Azam, Somayeh Farhang Dehghan, Ali Karimi, Farideh Golbabaei,
Volume 6, Issue 4 (12-2016)
Abstract
Introduction: Nowadays, Shielded Metal Arc Welding (SMAW) is the most widely used arc welding. During the welding operation, typically, various harmful agents such as fumes, gases, heat, sound and ultraviolet radiation are produced of which fume is the most important component from the viewpoint of occupational health. The present study aims to compare the number and the mass concentration emitted in SMAW to determine the most appropriate index of exposure to fumes in the welding processes.
Material and Method: In this study, the portable laser aerosol spectrometer and dust monitor of GRIMM, model 1.106, was used to measure the number and mass concentration of fumes emitted from SMAW on 304 stainless steel with a thickness of 0.4 mm. Air sampling was performed at a distance of 41 cm representing the welder’s breathing zone. The measurements of number concentration (NC) and mass concentration (MC) were taken under the condition of 25 volt voltage and direct current of the electrode polarity.
Result: The total NC and MC of welding fumes in welder’s breathing zone was 1140451 particles per liter and 1631.11 micrograms per cubic meter, respectively. The highest number concentration was found to correspond to the particles with 0.35 to 0.5 micrometer-sized distribution (NC1; 938976 particles per liter) and the lowest was related to the particles with 5 to 6.5 micrometer-sized distribution (NC7; 288 particles per liter) and the particles larger than 6.5 micrometer (NC8; 463 particles per liter). Moreover, the highest mass concentration was related to the particles with 0.35 to 0.5 micrometer-sized distribution (MC1; 450 micrograms per cubic meter) and the particles larger than 6.5 micrometer (MC8; 355 micrograms per cubic meter).
Conclusion: The findings indicated that there is no agreement between number and mass concentration as two particles assessment index, and as the particles’ size become smaller, the mismatch of them is becoming more apparent. Since the smaller particles penetrate into the lower respiratory tract and have higher potential for adverse health effects, it is necessary to measure and assess particles in various size distributions and especially the smaller fraction of particles. Therefore, it is thought that considering the mass concentration alone and not paying attention to number concentration in the assessment of exposure to particles in the industrial workplaces and specifically in welding stations will not be reflected valid assessment of adverse health effects of welding fumes as a systemic poison on body organs.
Bahram Harati, Seyed Jamaleddin Shahtaheri, Ali Karimi, Kamal Azam, Alireza Ahmadi, Maryam Afzali Rad, Ali Harati,
Volume 7, Issue 2 (6-2017)
Abstract
Introduction: In recent years, many national and international expert groups have considered specific improvements in risk assessment of chemical pollutants. This study considered to assess the risk of workers exposure to air pollutants in an automobile manufacturing in order to evaluate the health risk assessment due to the inhalation exposure.
Material and Method: To perform this study, a cross-sectional research was done in 2016. Methods number 1501 and 7602 of the National Institute of occupational safety and Health (NIOSH) were used for sampling and analysis of compounds BTEX and silica in the air. A total of 40 samples of compound BTEX were taken and analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID). A total of 6 samples of silica were collected during the campaign. Silica analyses were performed by using visible spectrophotometry. Risk ranking was calculated using the hazard and exposure rate. Finally, the relative risk of blood cancer caused by exposure to benzene was estimated.
Result: The result demonstrated that, workers were exposed to 5 chemicals including silica, benzene, toluene, ethyl-benzene, and xylene during their work in manufactory. Among the pollutants in the breathing zone of workers, Silica and benzene were hazardous chemicals at high risk level. Following the estimation of relative risk of blood cancer caused by exposure to benzene, workers cumulative exposure to benzene was obtained to be 23.1 ppm per year and the capture relative risk was 1.1. The consequence demonstrated that, significant relationships were seen between workers exposure to benzene and both age and work experience, so that degree of exposure decreased steadily with increasing age and experience (P<0.001).
Conclusion: This research demonstrated that, benzene and silica in the automobile manufacturing were the highest risk. Also, painting hall workers, at automobile manufacturing, were directly exposed to the blood cancer risk of benzene.
Masoud Hamerezaee, Farideh Golbabaei, Parvin Nasiri, Kamal Azam, Somayeh Farhang Dehghan, Asad Fathi, Faezeh Darabi,
Volume 8, Issue 2 (6-2018)
Abstract
Introduction: Heat stress is one of the hazardous agents in the steel industries which can threaten the health and safety of workers and lead to serious occupational diseases. The aim of the study was to assess the heat stress in the steel industries and compare PHS (Physiological Strain Index), WBGT (Wet-Bulb Globe Temperature), DI (Discomfort Index) and HSI (Heat Stress Index) indices for the estimation of heat stress and to determine the optimum index for steel industries.
Material and Method: This descriptive-analytic study was conducted among 220 workers engaged in two steel industries in Iran. Environmental and physiological parameters were measured according to ISO 7726 and ISO 9886 in three times of measurement, and finally the time-weight average of the heat stress indices were calculated. All data were analyzed using SPSS ver. 20.
Result: The time-weight average of WBGT (28.28 oC), DI (29.11 oC), HIS (65.7 %) indices were higher than the recommended limits. Physiological parameters (oral, tympanic and skin temperatures, systolic and diastolic pressures and heart rate) had the greatest value in the second time of measurement (afternoon). WBGT index comparing to the PHS, DI and HSI indices had highest correlation with oral, tympanic and skin temperatures and heartbeat (r=0.314 , 0.408 , 0.459 , 0.302, respectively; P < 0.05), while systolic and diastolic blood pressures showed no significant correlation with WBGT (P > 0.05). The WBGT index had the highest correlation with studied indices which was 0.945, 0.681 and 0.600 for DI, PHS and HSI, respectively.
Conclusion: This study assessed the optimal index with regard to the physiological parameters, and it was concluded that the WBGT index has the highest correlation with the most of physiological parameters, and therefore, WBGT index can be the most optimum index to heat stress assessment in the studied steal industries.
Mojtaba Zokaee, Mohsen Falahati, Hadi Asady, Masoud Rafee, Mohammad Najafi, Azam Biabani,
Volume 9, Issue 2 (6-2019)
Abstract
Introduction: Throughout the world, many efforts have been made to provide suitable tools for achieving sustainable urban development and the achievement of a sustainable city. Establishing a Health, Safety and Environment Management System (HSE-MS) is one of the tools for achieving sustainable urban development. Measuring the performance of an organization in the HSE area is a precondition for continuous improvement, which is the spirit of the new HSE management systems. Therefore, the main purpose of this research was to provide a practical model for quantitative ranking of different areas of Tehran municipality in terms of HSE performance with using of multi-criteria decision-making method.
Material and Methods: In this descriptive-applied study, after determining functional axis and performance evaluation indicators related to each of them (29 functional axis and 154 performance evaluation indicators), through designing a questionnaire and based on the views of the expert group, weight of functional axis and performance indicators were determined using a hierarchical process analysis technique.
Results: In this study, the weighted value for functional axis of the process based HSE in comparison to the result based HSE were higher. “Commitment and Leadership” and “HSE Certificate of Occupations” for the process based HSE, “Safety” and “Health” for the result based HSE, and “Economic Sustainability” and “Architecture and Urbanism” for urban management had the higher and lowest weighted values.
Conclusion: The results of assessment and validation of selected indicators and functional axis showed that in designing and determining the HSE performance assessment model of municipalities, in addition to the axises and indicators of the HSE domain, factors affecting urban management can have a significant impact on the performance of municipalities in the field of HSE.
Masoumeh Sadri Khanlou, Mohammadreza Monazzam, Kamal Azam, Alireza Mortezapour, Seyed Abolfazl Zakerian,
Volume 9, Issue 3 (9-2019)
Abstract
Introduction: Nearly a third of people work in jobs that use voice to be part of their work. Teachers as the largest group of professional vocal users, are at risk of vocal disorders. The aim of this study was to investigate the effect of different risk factors on vocal disorders in teachers.
Material and Methods: This is a cross-sectional and descriptive-analytic study that was conducted on 73 primary and secondary male and female school teachers in Saveh in 2017 by random sampling. The researcher-made questionnaire on risk factors affecting verbal disorders with the aim of identifying risk factors and a Voice Handicap Index (VHI) questionnaire (30 items) aimed at evaluating verbal disorders and symptom questionnaire were used in this study. All of them have been shown to be valid and reliable in previous studies. Data were analyzed using t-test and chi square statistical tests by SPSS ver.24.
Results: The reliability of the researcher-made questionnaire on the risk factors affecting vocal disorders was confirmed by Cronbach’s alpha (0.736) and its validity was confirmed by the experts regarding the adequacy of the number of questions, the lack of ambiguity and the assessment of content fitness. According to our gathered data, vocal disorders were observed in 55% of the teachers. Also the results showed the rate of vocal disorders in female teachers is far higher than male teachers. Functional disturbance of vocal cords and allergy as general risk factors, teaching tools and poor air quality as environmental risk factors and inadequate vocal rest and job stress as occupational risk factors contributed to increasing vocal disorders in teachers. Among the symptom associated with verbal disorders in teachers, vocal fatigue and hoarseness were more common in comparison with other symptoms.
Conclusion: Due to the prevalence of vocal disorders in half of the teachers and the impact of general, environmental and occupational risk factors, it is necessary to identify and control the risk factors of vocal disorders in teachers. It can also be concluded that teachers can enjoy a healthy voice by considering the principles of ergonomics and occupational health.
Faranak Najarian, Farideh Golbabaei, Asghar Ghahri, Kamal Azam,
Volume 9, Issue 4 (12-2019)
Abstract
Introduction: Occupational exposure to sevoflurane as an anesthetic gases in hospitals, dental clinics and veterinary clinics has been reported in various studies. Considering the harmful effects of sevoflurane anesthetic gas on the health of exposed personnel such as reproductive, preterm delivery and fetal abnormalities and increased spontaneous abortion, it is necessary to remove them from the air of the work environment, especially the treatment centers, with inexpensive and optimal methods. This study was aimed to compare two oxide-titanium based on Activated Carbon/ Graphene Oxide Nanosheets in nano and non-nano scales.
Material and Methods: Titanium oxide particles and nanoparticles were coated on actived carbon/ Graphene Oxide Nanosheets adsorbents. The prepared sorbents were characterized by instrumental techniques such as BET, SEM, XRD, FTIR and SEM-EDS to determine their properties. After characterization, the breakthrough and adsorption capacity of sevoflurane on both adsorbents were determined using the modified wheeler equation. Finally, the software of Microsoft Office Excel 2016 and SPSS Statistic version 21 IBM were used for statistical analysis of data.
Results: the results of XRD, SEM-EDAX analysis confirmed the stabilization of titanium oxide particles and nanoparticles on the sorbents. Furthermore, the FTIR results determined the functional groups on the sorbents. The BET results also showed the coating of titanium oxide nanoparticles on composite decreased the specific surface area of adsorption in comparison to adsorption containing titanium oxide particles. The adsorption capacity of the activated carbon/ Graphene Oxide Nanosheets coated with titanium oxide nanoparticles and titanium oxide particles were 240.7 and 210.5 mg sevoflurane per gram of sorbent, respectively (p-value<0.001).
Conclusion: The results showed that composite of activated carbon/nano oxide graphene coated with titanium oxide nanoparticles has a higher adsorption capacity of sevoflurane than other composite coated with titanium oxide particle, under the same conditions. This increase can be as a result of changes in surface chemistry (increase of the functional groups) in composite.
Hasti Borgheipour, Ghazaleh Monazami Tehrani, Shahriyar Madadi, Iraj Mohammadfam,
Volume 10, Issue 1 (3-2020)
Abstract
Introduction: Cranes are of the major causes of accidents in the construction industries. As human error mostly causes crane accidents, this study aims to investigate the human errors of tower crane operators in the construction projects using SHERPA and CREAM techniques.
Material and Method: In this research, first, all of the tasks of the tower crane operator were identified and analyzed. Then, adopting SHERPA technique, probable operator errors were identified in each task and the control modes and error probability were determined by CREAM technique. Finally, all the human errors risks were assessed and the actions for risk control were defined to control them in the acceptable level.
Result: According to the SHERPA technique, 148 errors were identified in the crane operator tasks. The human error assessment showed that monitoring the anti-collision system with the risk probability of 0.0003 has the highest control factor, while monitoring the existing guards with the risk probability of 0.056 has the lowest control factor. Also, the important tasks with high human errors were monitoring the guards with the cognitive risk probability of 0.07 and the tasks with cognitive risk probability of 0.05.
Conclusion: The findings in this study indicated that using complementary qualitative and quantitative methods can provide identification and prioritization of identified errors. This can help the organization to allocate limited organizational resources to control unacceptable risks and increase the efficiency and effectiveness eventually.
Azam Biabani, Mohsen Falahati, Iraj Alimohammadi, Mojtaba Zokaei, Hamed Jalilian, Ali Dehghani, Mohammad Najafi Majareh,
Volume 11, Issue 1 (3-2021)
Abstract
Introduction: Determining methods for assessing heat stress in different work environments is one of the major challenges for researchers in this field. The purpose of this study was to validate WBGT index and heat pressure assessment (HPA) by some physiological responses in Iranian South Oil Company.
Material and Methods: This descriptive-analytical study was carried out on 154 employees of Kharg, Asalouyeh and Mahshahr oil terminals recruited from three different working conditions including indoor, outdoor and rest environments in the summer. The amount of heat stress in the workplace was evaluated by WBGT index HPA method. To meet this purpose, the environmental parameters i.e., temperature, wet temperature, radiation temperature, relative humidity, water vapor pressure and air flow rate were determined. In addition to the direct reading method by the WBGT meter, ISO 7243 was used to calculate the WBGT index. In order to validate the heat stress indicators, physiological parameters of oral temperature, tympanic temperature and work metabolism were measured.
Results: The results of paired sample t-test showed a significant difference between WBGT index and HPA in indoor and outdoor environment (P<0.05). Moreover, there was a significant difference between the physiological indices of oral and tympanic temperatures and work metabolism in the indoor and outdoor environment (P<0.05). Furthermore, the correlation test was significant between WBGT index as an independent variable and HPA as a dependent variable (P<0.05) and showed a high correlation (R2=0.914) between WBGT index with oral temperature and tympanic temperature . Also, the rate of work metabolism was significantly related with the aforementioned parameters (P<0.05) and was equal to R2=0.423, R2=0.335, R2=0.552, respectively. The correlations were also significant between HPA with Oral temperature, tympanic temperature and work metabolism (P<0.05)and were equal to R2=0.632, R2=0.605, R2=0.557, respectively. The results showed also that the correlation rate between the HPA with physiological parameters is stronger than that between physiological parameters with the WBGT index.
Conclusion: This study showed that WBGT and HPA methods are useful for assessing the heat stress of Iranian South Oil Company. Also, the HPA method is more reliable for assessing heat stress in these regions.
Aysa Ghasemi Koozekonan, Mohammad Reza Monazzam Esmaeilpour, Saba Kalantary, Ali Karimi, Kamal Azam, Farideh Golbabaei,
Volume 11, Issue 1 (3-2021)
Abstract
Introduction: The skin, can be exposed to harmful factors like ultraviolet radiation (UV). Exposure to this physical hazardous agent could be contributed to pigmentation, erythemas, early aging, skin cancer, and DNA damage. The aim of this study, therefore, was to fabricate the polyacrylonitrile (PAN) nanofibers with the UV protection property by the use of various concentrations of titanium dioxide (TiO2) nanoparticles.
Material and Methods: The PAN nanofibers (10%wt) containing 0, 1, 5, 10 and 15% wt of TiO2 nanoparticles were produced using electrospinning method. The morphological propertis of nanofibers were studied by scanning electron microscopy (SEM) and the functional groups were investigated by Fourier transform infrared spectrophotometer (FTIR). The UV protection property of nanofibers was studied by measuring UV transmittance as well as calculating UV protection factor (UPF).
Results: The results showed that the diameter and morphological characteristics of nanofibers are different at various concentrations of TiO2 and increasing the concentration of TiO2 has resulted to an increase in nanofibers diameter. The analysis of FTIR results showed that TiO2 nanoparticles have been successfully loaded on nanofibers for UV protection purposes. The findings clarified that nanofibers loaded with TiO2 could increase the UV protection property up to 15%.
Conclusion: Totally, our findings show the successful fabrication of UV-protective nano webs using TiO2 nanoparticles. the new combination used in nano matcould protect employees from UV radiation.
Farhad Forouharmajd, Azam Salehi, Karim Ebrahimpour,
Volume 11, Issue 2 (6-2021)
Abstract
Introduction: one of the most important complications of exposure to ionizing radiation is emergence of cancer tumors, which happens as a result of oxidative DNA. Therefore, the present study was conducted, aimed to measuring 8-DIHYDROxy- 2’- DEOXYGUANOSINE (8-OHdG) level in radiographers’ urine as oxidative damage biomarker, as well as comparing this biomarker with cumulative effective doses.
Material and Methods: In the present study, the samples were selected into two categories, 35 of whom were from different radiography groups (including nuclear medicine, radiology, radiotherapy, CT scan), and 35 subjects were from the staff, who had no exposure to radiation. The results of the film badge were gathered from the hospitals. Since film badge monitoring period was found to be 2 months, the collective effective dose was obtained according to the respective formula for 30 last period and 6 last period. Then, at the end of the work shift, the urine samples were taken to determine the 8-OHdG concentration. The samples were obtained via the SPE (solid-phase extraction) method. After that, the 8-OHdG concentration was read by the GC/MS analyzer. Finally, the data extracted from the 8-OHdG concentration and the collective effective dose of the radiation were analyzed by SPSS software.
Results: The results showed an increase in the level of 8-OHdG, as one of the oxidative biomarkers in the body of radiographers, but the level of 8-OHdG showed a direct relation in the body of the radiographers with an average collective effective dose of radiation in the last 30 as well as the last 6 periods.
Conclusion: Observing the radiation protection principles by radiation workers results in decreased radiation and, in turn, reduces the level of oxidative stress, thus, reducing the potential effects of radiation.
Rostam Esmaeili, Ahmad Ali Babaei, Ghazaleh Monazami Tehrani,
Volume 11, Issue 2 (6-2021)
Abstract
Introduction: Each country needs to preserve its human capital through preventing accidents for its development. Therefore, this study is carried out to study the relationship between safety investments and safety performance indices considering the interactive effect of the project hazard level in construction industry.
Material and Methods: This study was conducted using multiple case studies in 5 major construction worksites, in Tehran, in 2019. Data was collected using questionnaire, checklists and interview as well as evaluating the safety documents. The data analysis in this study was carried out using SPSS 18.
Results: There was a strong inverse correlation between safety investments (total safety investment, basic safety investment, and voluntary safety investment) and accident frequency rate (AFR) (r=-0.936, P-value<0.05), and there was a direct strong correlation between safety investment and safety performance (P-value<0.05, r=0.939). Also, the effect of various safety investments on safety performance indices under various project conditions (project hazard levels) was not the same; when the project hazard level was high, the effect of safety investments on safety performance was higher.
Conclusion: Increasing safety investment improves safety performance through decreasing the accidents. Also, investment in both safety components (basic safety investment and voluntary safety investment) might improve safety performance. The results of the current study can be used as a basis by the contractors and construction companies to invest in safety and to determine proper budget for managing safety of construction projects.
Azar Mehrabi Matin, Mahsa Alefi, Mohammad Reza Monazzam, Adel Mazloumi, Kamal Azam,
Volume 12, Issue 1 (3-2022)
Abstract
Introduction: The noise could affect some aspects of human health, including the cognitive performance. In addition to sound pressure level and exposure time, the psychoacoustic features of noise may cause destructive effects on humans. A few recent studies have been conducted on effect of sound quality on cognitive performance. This study aims to find the noise loudness and sharpness levels as the most destructive effects on human cognitive performance.
Material and Methods: This was a cross-sectional study on 10 male students of Tehran University of Medical Sciences. The Noises were generated in two channels that the left channel produced the pink noise as a background noise. The pink noise loudness and sharpness were 19.7 sone and 2.49 acum, respectively. The right channel generated noises with different loudness and sharpness levels the noise loudness ranged from 8.87 to 67.9 sone and the noise sharpness ranged from 1.07 to 6.4 acum. Finally, ten noises with different loudness and sharpness were applied. The students were exposed to ten different types of noise and a silent condition. The Mathematical Problem Solving Task (MPST) test was performed to assess cognitive performance. The reaction time and the accuracy rate were measured after 5 minutes of noise exposure. Data were analyzed by SPSS (ver. 22). P< 0.05 was considered as significant level.
Results: The mean reaction time and the mean accuracy rate increased with the sharpness level. However, alteration in the loudness and sharpness levels had no significant effect on the speed and accuracy of students. Performance speed increased in noise 3 with the highest loudness (L=67.9, SH=1.07) in comparison with the silent condition (p-value=0.05). The mean accuracy rate in exposure to the noise 9 reduced in comparison with silence (p-value=0.04)
Conclusion: Different levels of psychoacoustic features had no significant effect on the cognitive performance parameters. Although, the accuracy rate and the reaction time decreased in noises 9, the sharpest noise, and 3, the loudest noise, in comparison to the silence, respectively.
Asghar Hadi, Aligholi Niaei, Azam Seifi, Yahya Rasoulzadeh,
Volume 12, Issue 3 (9-2022)
Abstract
Introduction: Rapid population growth and industrialization have increased chemical pollutants. Some studies show that employee exposure to formaldehyde in industrial places, hospitals, and laboratory settings is more than the allowed limits. Therefore, it is necessary to implement a proper control system to reduce this exposure. This study aimed to synthesize Ag3PO4/TiO2 nanocomposite, determine its morphological and structural characteristics, and test the degradation efficiency of this photocatalyst on formaldehyde.
Material and Methods: Ag3PO4/TiO2 composites were synthesized via an in-situ precipitation method. The physicochemical, morphological, and optical properties of the synthesized sample were investigated by employing the BET method, X-ray diffraction (XRD), UV–visible absorption spectroscopy, and scanning electron microscopy (SEM). The photocatalyst degradation efficiency test was performed on gaseous formaldehyde in a 3.2-liter photoreactor under visible light radiation.
Results: The UV–Vis absorption spectrum of the Ag3PO4/TiO2 sample noticeably shifted to the visible light region compared to that of the TiO2. The bandgap energy of the nanocomposite was 2.3 eV. The SEM image demonstrated that the average particle size of the nanocomposite was about 102 nm. The result of the degradation efficiency tests revealed that 63% of the formaldehyde was removed under visible light irradiation after 90 minutes by the Ag3PO4/TiO2 photocatalyst.
Conclusion: The adopted synthesis method adopted was highly efficient and appropriate for the synthesis of Ag3PO4/TiO2 nanocomposite according to the analyses. The Ag3PO4/TiO2 photocatalyst performed well under visible light radiation and could be used in pollution control systems.
Maryam Ghaljahi, Elnaz Rahimi, Azam Biabani, Zahra Beigzadeh, Farideh Golbabaei,
Volume 13, Issue 2 (6-2023)
Abstract
Introduction: Numerous studies have been conducted on the development of modern insulators, including nano-insulators. However, a comprehensive study has yet to be performed to review and investigate the thermal properties of these insulators. Consequently, this study aimed to examine the effect of nanomaterials on thermal insulation function.
Material and Methods: In this review, articles were searched for in English databases (PubMed, Web of Science, and ScienceDirect), Persian databases (Magiran, SID), and Google Scholar. The keywords used in the search were Nano Material, Nano Insulation, Thermal Insulation, Thermal Insulator Stability, and Thermal Conductivity in both English and Persian.
Results: Of the 4068 studies identified through search databases, 15 were selected according to the entry criteria. Among the studies, the three types of silicone, composite, and aerogel insulation had the highest frequency (each 26.67%), and SiO2 nanoparticles were the most prevalent nanomaterial (26.67%). According to the studies, the type of nanomaterial used in insulation will improve its properties such as thermal resistance, mechanical strength, dielectric strength, tensile strength, elasticity, and hardness.
Conclusion: The results of this study showed that using nanotechnology could be an effective step in improving the properties of insulation materials, the most important of which is increased thermal resistance. Moreover, nanotechnology insulators can prevent thermal energy loss, reduce costs, and provide safety and comfort.
Marzieh Izadi Laybidi , Adel Mazloumi , Jebraeil Nasl Saraji, Faramarz Gharagozlou, Amir Homayoun Jafari, Zahra Shirzhiyan, Kamal Azam ,
Volume 13, Issue 3 (9-2023)
Abstract
Introduction: Air traffic control is a very complex process, including multiple human-machine interactions. Human mental workload plays an important role in this process. Nowadays, electroencephalography indexes are considered as new indicators in the field of assessment of mental workload. The purpose of the present study was to investigate the relationship between EEG theta power and mental workload in air traffic control simulation.
Material and Methods: Fourteen air traffic controllers participated in this study. Controllers carried out two scenarios, including low and high workload, based on task load factors in an air traffic control simulator. Mental workload was assessed in these two scenarios by the NASA-TLX questionnaire. EEG signals were continuously recorded during air traffic control tasks. Afterward, absolute theta power was extracted from participants’ EEG using Fast Fourier Transform (FFT) by the MATLAB software and was compared with each other in terms of high and low workload.
Results: The results showed a significant relationship in absolute theta power during low and high workload scenarios in all regions of the brain (p < 0.05). Absolute theta power increased primarily in the frontal region during the high workload scenario. Also, there was a significant increase in the relationship between work experience and absolute theta power at the F3 region during the high workload scenario (P=0.021, r=0.607).
Conclusion: Absolute theta power provides a good parameter to assess mental workload at different levels of air traffic control tasks. Therefore, it can be used as a tool for the design of human-machine complex systems.
Mahdi Alinia Ahandani, Saba Kalantary, Monireh Khadem, Fatemeh Jafari, Kamal Azam, Farideh Golbabaei,
Volume 13, Issue 4 (12-2023)
Abstract
Introduction: VOCs are harmful air pollutants that must be detected, monitored and eliminated. Adsorber tubes are standard tools for this task, specifically activated carbon tubes with high adsorption and selectivity. This research aims to compare the structural and functional characteristics of domestically produced activated carbon tubes with the conventional commercial ones for sampling toluene, a volatile organic compound.
Material and Methods: The characteristics of each adsorbent, such as structure, morphology, porosity, and element composition, were examined by SEM photography, BET testing, and EDAX analysis. The central composite design (CCD) method was employed to investigate the adsorption properties of the adsorbents. The input concentration and readsorption time of the samples were the variables considered in this study. Additionally, a field phase of personal air sampling was performed to evaluate the effectiveness of adsorbent tubes.
Results: SEM and BET analyses indicated that the porous structure of domestic activated carbon was comparable to the model produced by SKC. EDAX analysis detected a minor impurity (1%) in the domestic activated carbon adsorbent. The adsorption performance was significantly influenced by the variations in readsorption time and pollutant input concentration. The accuracy and precision of the performance of the domestic adsorbent tube were obtained as 90.77% and 91.76%. The field phase results demonstrated that the amount of pollutant adsorbed in the SKC-activated charcoal adsorber did not differ significantly during 0 to 30 days. However, the domestic adsorber showed a significant difference in the same period. The overall performance of the two adsorbers did not exhibit a significant difference between 0 and 30 days.
Conclusion: Despite minor structural differences, the adsorption efficiency of toluene by domestic adsorbent tubes in sampling high concentrations is very similar to its commercial type. However, it is not recommended for use in low-concentration environments (10 ppm and less).
Mojtaba Zokaei, Marzieh Sadeghian, Mohsen Falahati, Azam Biabani,
Volume 13, Issue 4 (12-2023)
Abstract
Introduction: Due to the increase in the provision of electronic services to citizens in government offices, the number of computer users and the occurrence of musculoskeletal disorders have increased. Therefore, this study aimed to predict and model the complex relationships between the risk factors of musculoskeletal disorders in computer users working in government offices by an artificial neural network.
Material and Methods: The current cross-sectional study was conducted in 2020 on 342 employees of various government offices in Saveh city. First, the researcher visited the work environment to identify the problems and measure the environmental factors. Then, ergonomic risk assessment and psychosocial factors were evaluated using the Nordic questionnaire and the ROSA method. The effect of various factors in causing musculoskeletal disorders was investigated using a logistic regression test.Then the resulting data were collected and modeled by one of the neural network algorithms. Finally, artificial neural networks presented an optimal model to predict the risk of musculoskeletal disorders.
Results: The results showed that by increasing the level of social interactions, the level of demand, control, and leadership in the job, musculoskeletal disorders in men and women decrease. There was a significant relationship between the prevalence of musculoskeletal disorders and job demand, job control levels, social interaction levels, leadership levels, organizational climate levels, job satisfaction levels, and stress levels, in addition between reports of pain in the neck and shoulder and wrist/hand region. There was a significant relationship with the overall ROSA score. Also, there was a significant relationship between the report of pain or discomfort in the neck area with the phone screen risk score, wrist/hand with the keyboard-mouse risk score, and shoulder, upper back, elbow, and lower back with the chair risk score. The accuracy of the presented model for predicting musculoskeletal disorders was also about 88.5%, which indicates the acceptability of the results.
Conclusion: The results showed that several factors play a role in causing musculoskeletal disorders, which include individual, environmental, psychosocial, and workstation factors. Therefore, in the design of an ergonomic workstation, the effects of the mentioned factors should be investigated. Also, predicting the effectiveness of each of the mentioned factors using an artificial neural network showed that this type of modeling can be used to prevent musculoskeletal disorders or other multifactorial disorders.
Elahe Chubineh, Saber Azami Aghdash, Ali Esmaili, Seyed Shamseddin Alizadeh,
Volume 14, Issue 2 (6-2024)
Abstract
Introduction: For years, chemical process industries have reported the unexpected release of highly hazardous liquids and gases. A disaster could not be avoided when these materials were not adequately controlled. The issue of Process Safety Management (PSM) is still being discussed in developing and developed countries. PSM was established to manage the risks of a company’s personnel, properties, products, environment, and credit risks. This study aimed to review the challenges and achievements of PSM implementation and provide recommendations for improvement.
Material and Methods: A collection of scholarly articles published from 2000 to 2023, such as Science Direct, WOS, PubMed, and Scopus, was chosen through a systematic, meticulous review. After thoroughly examining these abstracts, titles, and complete contexts, 49 articles were finally selected for inclusion in the study and classified based on different criteria, such as publication year, authors, achievements, and challenges.
Results: PSM in the United States has been chiefly studied due to the high number of chemical process industries and its presence in the form of OSHA legislation in this country. The areas of operations, audits, and resources have the most challenges in implementing PSM. On the other hand, reducing the severity of incidents in chemical processes and increasing productivity are considered the most significant achievements of PSM implementation.
Conclusion: PSM as an interdisciplinary field has improved and become more effective over the years.. However, incidents still exist, and the number can increase, considering the growth of industries’ chemical processes. Therefore, a deep look at the issues of risk-based regulations, competency, operational excellence, and learning from incidents is necessary to achieve excellence in PSM.
Elnaz Rahimi, Azam Biabani, Maryam Ghaljahi, Farideh Golbabaei,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Workers who work in warm situations need clothes with better thermal regulation. Nowadays, improving the thermal regulation properties of cotton fabric by treating it with phase change materials (PCMs) has been considered. The type of fabric plays an important role in providing thermal comfort. Cotton fabric is the most popular raw material in the textile industry due to its distinctive features. Therefore, this systematic review aims to investigate the effects of PCM nanoencapsulation in commonly used cotton fabrics, including morphology, thermal properties, thermal stability, tensile strength, abrasion resistance, leakage, water absorption, washing ability, and breathability of the fabric, related challenges, and future research trends.
Material and Methods: This research was conducted with the papers obtained from the systematic search in Science Direct, Web of Sciences, Scopus, and PubMed databases. Keywords “nanoencapsulated phase change materials”, “nanoenhanced phase change materials”, “cotton”, “cotton fabric”, and “cotton textiles” were used.
Results: Of the 1251 studies identified through search databases, 13 were selected according to the entry criteria. The results revealed that in all the studies, PCM nanocapsules were successfully synthesized and inserted into the cotton fabric, improving the fabric’s thermal properties. Most studies used in situ polymerization and mini-emulsion polymerization for nanoencapsulation. The pad-dry-cure method was also widely used for applying nanocapsules to cotton fabric.
Conclusion: This systematic review showed that synthesized nanocapsules of phase change materials and applied them to cotton fabric can improve the thermoregulating properties of the fabric. It is suggested to expand the research to design thermoregulating clothes made from treated fabrics and investigate their cooling performance.