Search published articles


Showing 59 results for Risk

Manouchehr Omidvari, Zahra Rafighi, Samareh Omidvari,
Volume 10, Issue 4 (11-2020)
Abstract

Introduction: The main purpose of this study was to identify and evaluate environmental problems and their ranking and to determine the conceptual model of environmental impact assessment (EIA) in industrial parks. Accordingly.
Material and Methods: In this study, environmental infrastructure issues were classified into five sections. The decision-making trial and evaluation laboratory (DEMATEL) technique was also employed to establish the relationships between the criteria. Moreover, the analytic network process (ANP) was utilized to determine their weight.
Results: Examining the internal relationships between the variables correspondingly revealed that cultural and economic criteria were the most influential. On the other hand, the biological criterion was very effective. The ANP results also showed that the “low share of environmental investment” as an indicator was an economic criterion with a normal weight of 0.80, which was of utmost importance among the other defined cases.
Conclusion: It was concluded that the definition of conceptual models in EIA processes can make it possible to examine and analyze the criteria and indicators affecting evaluation processes.
Saeed Omidi, Ghorbanali Jennat Feridooni, Rabiollah Farmanbar, Mahmoud Heidari,
Volume 11, Issue 2 (6-2021)
Abstract

Introduction: Risk perception to safety and health is particularly important and affects behavior. Most of accidents occur because people do not have proper understanding about them. Accidents may be an important consequence of risk perception or, more precisely, an inaccurate perception of risk. Education has been always widely recognized as an important component of occupational risk management programs. The aim of this study was investigating the effect of an educational intervention based on the theory of planned behavior on firefighters’ risk perception in operational units.
Material and Methods: This study was a randomized controlled trial performed on 92 firefighters, in Rasht, in 2019. Cluster sampling method was carried out, and the firefighters were randomly assigned to two experimental and control groups with equal numbers. Data collection instrument was a questionnaire with the three sections including demographic variables, risk perception, theory of planned behavior constructs. The educational program consisted of five sessions of 30-75 minutes for each group (six groups of 7-8 firefighters). The data were collected before and one month after educational intervention, and analyzed by Chi-square, independent and paired-sample T test, Mann-Whitney U and Wilcoxon using SPSS software version 21.
Results: The mean age of firefighters was 35.91±5.17 years, and no significant difference was observed between the two groups in demographic variables. Before the educational intervention, no significant difference was seen between the intervention and control groups in risk perception, the model constructs and self-report behaviors, but after performing the educational intervention the variables were significantly increased in the intervention group.
Conclusion: The current study results showed an improvement in firefighters’ risk perception due to educational intervention based on the theory of planned behavior. Thus, the theory of planned behavior can be used as a theoretical framework for the design and implementation of firefighters’ risk perception.
Sajad Bahrami, Ahad Sotoudeh, Naser Jamshidi, Mohammad Reza Elmi, Mohammad Saeid Poorsoleiman,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: Chemical industries often have risks for the environment and communities, due to the use of complex facilities and processes. Also, in the ammonia tanks, the probability of risk of explosion is high, owing to their specific characteristics. The aim of this study is to evaluate the risks of explosion scenario at the ammonia tank in the Kermanshah petrochemical complex
Material and Methods: To achieve the purpose of this study, the Fuzzy Fault Tree Analysis (FTA) method was used to estimate the probability of reliability in the basic events. In this study, after drawing Fault Tree for identifying basic events, the probability of basic events was estimated by means of expert’s elicitation, and the probability of minimal cut sets was computed through Boolean logic gates.
Results: According to the results, the probability of occurrence of the top event was obtained equal to 0/054997. In the minimal cut set prioritizing, the failing of pressure safety valves identified as the most effective factor in the top event occurrence, and afterward failing the control valves and human errors were identified.
Conclusion: This study indicates that, based on expert elicitation, a fuzzy error tree method can be used to assess the risk of various scenarios in the industry. Overall, in assessing the risk of the explosion scenario in the ammonia reservoir, it was found that some minor defects, and even human error, could be considered as a major contributor to the explosion.
 
Amin Babaei-Pouya, Zahra Pajohideh, Maryam Feiz Arefi,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: Labor is one of the most important wards of hospital, where human error is high. Midwifery errors in the maternity ward and in the delivery can be a serious threat to the health of the mother and the infant, resulting in increased treatment costs. Factors affecting human error are diversity in work, high workload, and fatigue. Therefore, this study aimed to evaluate the midwifery errors in the maternity ward using the systematic human error reduction and prediction approach (SHERPA) technique.
Material and Methods: This cross-sectional study was conducted in 2019, during which different midwifery tasks were determined in four stages of admitting, pre-labor, delivery, and postpartum. Tasks and sub-tasks were identified using the hierarchical task analysis (HTA) technique and human error was evaluated using the SHERPA technique.
Results: The results of the HTA technique identified 19 main tasks, 52 sub-tasks, and 114 activities. After assessing human error risk with the SHERPA technique, the performance was the most frequent type of  error and the highest frequency was related to the undesirable risk level.
Conclusion: The errors of the midwifery profession in the hospital’s labor are high-risk and largely critical. Factors such as high workload, time pressure, and fatigue influence the incidence of human error. In order to reduce human error in this area, strategies such as reducing staff workload, developing standard checklists and guidelines are essential to reduce human error in this ward.
Mostafa Mirzaei Aliabadi, Hossein Ramezani, Omid Kalatpour,
Volume 12, Issue 1 (3-2022)
Abstract

Introduction: In process industries, some of the primary events may result in secondary events in an industrial unit called the domino effect. Since refinery storage tanks are always at risk of fire and explosion, quantitative risk assessment is important in determining the severity and outcome of an accident, taking into account the effects of dominoes on the main industry, neighbors, and society and can play an important role in risk management. Therefore, the purpose of this study was to quantitatively evaluate the risk of condensate storage tanks taking into account the domino effect.
Material and Methods: The technique used in this study was Quantitative Risk Assessment (QRA), the analysis of the consequences of which was performed using PHAST (7.22) after setting goals, studying the process, identifying hazards and scenarios. Then, to determine the extent of the domino effects of the escalation vectors were matched against the threshold, and after screening, the overall vulnerability of the repositories for mapping individual risk levels was calculated.
Results: In the leakage scenario, after considering the domino effects, the risk contour 10-4 to about 250 meters and the risk contour 10-5 to about 400 meters increased. Also in the catastrophic rupture scenario, the radius of risk contour of the 10-5 increased to100 m after considering the domino effects up to around damage tank.
Conclusion: As can be deduced from the results, using this method can give a clear picture of the consequences of chain events and the probability of damage to nearby employees, equipment and neighbors, which is very important in risk, emergency and crisis management.
Rajabali Hokmabadi, Esmaeil Zarei, Ali Karimi,
Volume 12, Issue 3 (9-2022)
Abstract

Introduction: Failure modes and effects analysis (FMEA) method is used in industries to identify, assess and prioritize risks. Multi-criteria decision-making methods (MCDM) select the best option from different criteria. Therefore, this study aims to identify, assess and prioritize risks using FMEA based on SWARA-VIKOR multi-criteria decision-making methods in a gas pressure reduction station.
Material and Methods: In this descriptive and analytical study, stepwise weight assessment ratio analysis (SWARA) and decision-making optimization and compromise solution (VIKOR) methods were used to rank the risks of failure modes identified in FMEA. SWARA method was employed to determine the severity, probability and discovery weights, and VIKOR technique was applied to rank the failure modes of the system equipment. Finally, an operational example of the pressure reduction station was presented to show the application and feasibility of the proposed model. A comparative study was conducted to confirm the practicality and effectiveness of the proposed model.
Results: In total, 35 main failure modes were identified in the pressure reduction station. Failure of regulator sleeve and safety valve and regulator diaphragm rupture were assigned the first, second and third ranks of risk priority, respectively. The sensitivity analysis results showed the proposed approach had desirable stability and only the failure mode of increasing the heater flame temperature was very sensitive to changes in the weight of the criteria. Results of ranking the failure modes of the station indicated there were many changes in the ranking of failure modes based on the proposed approach.
Conclusion: The proposed approach could provide more reasonable and accurate results for ranking risks because the criteria were weighed step by step based on the experts’ opinion.
Alireza Askarian, Mahnaz Mirza Ebrahim Tehrani, Seyed Mohammad Taghi Sadatipour, Seyed Ali Jozi, Reza Marandi,
Volume 12, Issue 4 (12-2022)
Abstract

Introduction: Unit risk management is a critical component of gas refining management, as risks that are not well-managed may lead to trip production failures. The present study aimed to provide a structural model for investigating the role and effect of different variables on stopping the gas production process in the gas refinery.
Material and Methods: This study was a retrospective cross-sectional and systematic analysis, which was carried out on key risks in the trip gas sweetening unit in a gas refinery industry located in Asaluyeh, Iran. The systems analysis was applied by using Fishbone Diagram, and then data modeling was prepared by Structural Equation Modeling (SEM) for an incident that occurred during gas sweetening production. Tools for the data analysis included the SPSS 24 and Smart PLS 2 software.
Results: Results of this research indicate that “Environment Risk” with a path coefficient of 0.943 and T- Value of 103.791; “Cost Risk” with a path coefficient of 0.937 and T- Value of 95.168; “Implementation of management system Risk” with a path coefficient of 0.847 and T- Value of 35.23; “Accident Risk” with path coefficient of 0.577 and T- Value of 25.410; “Time Risk” with path coefficient of 0.758 and T- Value of 15.121; “Human Error Risk” with path coefficient of 0.712 and T- Value of 11.215 had the most important coefficients of the paths respectively, that are effective in stopping production concerning other risks. Also, by comparing the path coefficients of the risks we can see that the impact of each of the risks on stopping production is different.
Conclusion: The findings of the present study revealed that a combination of variables can affect stopping production in the gas industry. Therefore, the role of these risks in losses in the refinery system should be investigated.
Mehri Mangeli Kamsefidi, Alireza Shahraki, Faranak Hosseinzadeh Saljooghi,
Volume 12, Issue 4 (12-2022)
Abstract

Introduction: Failure Mode and Effects Analysis (FMEA) is a structured way to find and understand the states of a system’s failure and to calculate the resulting effects. In this method, which has been criticized by many researchers, the risk priority number is obtained for each failure mode based on the multiplication of the three parameters of occurrence (O), severity (S) and detection (D). In order to overcome the disadvantages of the traditional method of FMEA, such as ranking the failure and weighting the parameters, this research proposes a model in the fuzzy set.
Material and Methods: The model proposed in this paper is a nonlinear model for weighting the parameters of the FMEA and the revised TOPSIS method for ranking the failures, which is used for the first time to improve the FMEA method.
Results: The proposed model was presented in the Copper Complex of Shahr-e-Babak to assess safety risks. Based on the results of the study, it was found that in this proposed model, the weights of severity and detection were 0.479 and 0.186, respectively, and the results of the ranking showed that the risks of falling from height and getting stuck between objects had the highest and lowest priorities, respectively.
Conclusion: In the proposed model, based on Logarithmic Fuzzy Preference Programming and the revised TOPSIS method, the definite weights of the parameters were presented without any fuzzy number ranking and risk ranking with more criteria, respectively. Therefore, the proposed model has a higher ability compared to the traditional FMEA, and its application can be recommended to determine the ranking of risks.
Farahnaz Khajehnasiri, Vida Zaroushani, Zahra Babaei Haris,
Volume 13, Issue 1 (3-2023)
Abstract

Introduction: This study quantitatively analyzed the fire risk using the Fire Risk Index Method: Multistorey Apartment Buildings (FRIM-MAB) method, considering the importance of fire safety in student dormitories as human gathering centers and previous limited studies.
Material and Methods: This descriptive-analytical study was conducted on 17 sections of the Qazvin University of Medical Sciences student dormitory in 2021. This study used the FRIM-MAB version 2.1. In this method, 17 parameters and their sub-parameters affecting the fire risk index were determined and weighted. Consequently, the studied dormitory was also inspected, the weighted degree of each parameter was computed, and the fire risk index for each section, which ranged between 1 and 5, was determined.
Results: The average fire risk index of the dormitory building at the time of the study was 2.37. The laundry room received the lowest risk index (1.69), while the computer site received the highest risk index (2.7). The results indicated that the most effective parameters causing fire risk were related to “compartmentation” (12 frequency items), “linings in the apartment” (4 frequency items), and “escape routes” (1 frequency item). These parameters contributed more than 42% to create the risk index for the dormitory’s most dangerous areas.
Conclusion: The FRIM-MAB method is a suitable quantitative and indexing fire risk assessment method for student dormitory buildings, and it is a quick, inexpensive, and effective screening and ranking tool. Periodically evaluating the dormitory’s fire risk and, if necessary, improving the environment is essential. In the present study, compartmentation, linings in the apartment, and escape routes were the most effective parameters in fire risk of the studied dormitory.
Seyed Saeed Keykhosravi, Farhad Nejadkoorki, Sonouran Zamani,
Volume 13, Issue 1 (3-2023)
Abstract

Introduction: Nowadays, air pollution is now considered to be the largest environmental health threat. This study was conducted with the aim of determining occupational exposure to chemical pollutants, including sulfur dioxide (SO2) and hydrogen sulfide (H2S) and assessing the health risk of exposure to these compounds using a combination of AERMOD and SQRA methods.
Material and Methods: The present study is considered as a descriptive-analytical and cross-sectional research, which was conducted in 2002 in one of the gas air refineries of South Pars in the Persian Gulf region, in such a way that the amount of emissions coming out of refinery chimneys was measured by the Testo 350- XL. AERMOD model was used to simulate the dispersion of H2S and SO2 chemical pollutants. Respiratory exposure and health risk assessment of refinery personnel and nearby residents were performed using the recommended method by the Singapore Occupational Health Services Pte Ltd.
Results: Hydrogen sulfide and sulfur dioxide were introduced as the most dangerous chemicals. According to the results, the highest risk value for sulfur dioxide among the exposure groups was related to the sulfur recovery unit (SRU), the west side of the Train Gas unit and the gate pass building of the refinery, and the highest risk values for sulfur dioxide among the exposure groups were related to the HSE building, security door, fire stations building, tanks, steam generating unit, west side of Train Gas unit, dining hall and gate pass building of the refinery. Hydrogen sulfide obtained a low to medium risk level, and sulfur dioxide a low to high risk level in terms of frequency.
Conclusion: This model can be considered as a suitable and quick solution in the superior management of the concentration of pollutants and also a promising solution in order to increase the ability of decision makers to assess the health risk of industries’ personnel. Also, ensuring quality   monitoring results and reducing sampling costs are discussed.
Mahshid Asgary, Vida Zaroushani, Mehran Ghalenoei, Yousef Akbari,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: Fire in hospitals and medical centers can lead to unfortunate and dire accidents due to the immobility of most patients, the presence of expensive medical equipment, and the essential role of hospitals in providing health services to people. This study aims to increase fire safety in a healthcare training center in Qazvin.
Material and Methods: The latest NFPA 101A was used for fire risk assessment in seven departments of an educational hospital in Qazvin City in 2021-2022. The study calculated the residential risk factor for residents of each area, examined fire safety parameters and determined their risk factor, calculated the obtained points of the area under evaluation, determined the minimum required points in different areas of fire safety, and estimated the fire risk level.
Results:  ICU 1 and 2 departments, CCU 1 and 2, central warehouse, pharmacy warehouse, and hospital facilities were selected for fire risk assessment. The ICU building had the best condition with a total fire safety point of 21.1. The facility building, with a total fire safety point of -14.5, was in the worst condition.
Conclusion: The results showed the need for more attention from researchers to conduct studies in outdoor environments, in various parts of the country, on development and validation of novel heat stress indices, and on implementation and evaluation of control measures in environments with high heat stress.
Hamidreza Raeihagh, Azita Behbahaninia, Mina Macki Aleagha,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: Pipelines are widely used to transport large volumes of oil and gas over long distances. Risk assessment can help identify risk factors and create an appropriate action plan and strategy to reduce or eliminate them. The main goal of this research is to provide a method for assessing the risk of pipelines based on the Fuzzy Inference System (FIS), creating a systematic format that is expected to be a more effective, accurate, and reliable model for controlling risks related to oil and gas pipelines.
Material and Methods: In this article, fuzzy logic is used to model uncertainty and present a model for assessing pipeline risk. The Muhlbauer method, one of the most common risk assessment methods for oil and gas pipelines, has been employed to determine critical factors affecting the lines. This method has been implemented using the Mamdani algorithm and based on expert knowledge in the fuzzy logic toolbox of MATLAB software. To validate the results of the proposed model, data from the interphase pipelines of the fifth refinery of the South Pars Gas Field have been used as a study sample.
Results: The findings from the implementation of the model created in South Pars Phases 9-10 pipelines (on shore) show that the studied pipelines are divided into three parts (A, B, and C) based on indicators such as population density and equipment deployment. Part C of the pipeline has the highest risk, with third-party damage and design being the most important factors affecting it. Part B has the lowest level of risk and results in the fewest consequences for human accidents. It was also observed that corrosion is essential in increasing leakage and risk in all three pipeline parts.
Conclusion: To verify the developed model, the inter-phase shore pipe of phase 9-10 refinery in the South Pars Gas Field was considered as a case study. The findings indicate that the proposed method provides more accurate and reliable results than traditional methods. Factors such as improper operation, dispersion, receptors, leakage volume, and product risk, which are other factors affecting pipeline risk, were not considered in traditional methods. Therefore, the risk level of oil and gas pipelines can be calculated using this model as a comprehensive and intelligent tool.
Ali Naseri, Vajihe Hoshyar,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: The COVID-19 pandemic caused many businesses to face problems and created job insecurity, leaving many workers and employees stressed about losing their jobs. Therefore, the current research aimed to analyze the impact of workplace safety management measures on the behavior of organizational citizens concerning the role of job insecurity and the perceived risk of COVID-19 among the employees of Mashhad Social Security Organization.
Material and Methods: The current applied research is a descriptive survey. The research population is all 560 employees of the social security organization of Mashhad city. The sample size was estimated based on Morgan’s table using a convenience sampling method, with a total number of 225. The data collection instrument was Wu et al.’s (2022) standard questionnaire, used to check construct validity and confirmatory factor analysis. Cronbach’s alpha coefficient and composite reliability were used to measure reliability, and the results showed that the questionnaire was adequately valid and reliable. The data analysis also involved structural equation modeling conducted in Smart PLS.
Results: The results showed that workplace safety management measures have an impact on organizational citizenship behavior and the perceived risk of COVID-19. Also, the perceived risk of COVID-19 has a positive effect on perceived job insecurity. Yet, the perceived risk of COVID-19 does not influence organizational citizenship behavior and does not mediate the relationship between workplace safety management measures and organizational citizenship behavior. Workplace safety management measures have an impact on perceived job insecurity, and job insecurity has an impact on organizational citizenship behavior.
Conclusion: In light of the present findings, it can be concluded that workplace safety management measures are among the most important programs and strategies of organizations to increase citizenship behaviors, support employees, and provide safe conditions in an organization.
Mohammad Javad Sheikhmozafari, Fatemeh Sadat Mirnajafi Zadeh, Neda Sasani Nasab, Parsa Mohammad Alizadeh, Jamal Biganeh, Seyed Abolfazl Zakerian,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: Work-related musculoskeletal disorders (WMSDs) are a prevalent occupational health concern, influenced by both physical and psychosocial factors. Valid questionnaires offer a cost-effective and efficient means of evaluating WMSDs. This study aimed to validate the Persian version of the MDRF questionnaire, assess its applicability in Iran, and investigate the prevalence of WMSDs among employees in an automotive industry.
Material and Methods: This descriptive cross-sectional study was conducted among 100 employees (50 production line workers and 50 office workers) in Kerman province. The linguistic validity of the questionnaire and its translation were ensured using the Backward-Forward method. Content validity was assessed through CVI and CVR indexes. To evaluate the questionnaire’s reliability and agreement, Cronbach’s alpha and ICC were employed. User responses from the first and second series of the questionnaires were validated using Kappa and Spearman’s tests.
Results: Results indicated high reliability which was achieved by Cronbach’s alpha and ICC values of 0.960 and 0.925, respectively. The questionnaire’s validity was acceptable based on CVR and CVI tests. The prevalence of WMSDs was the highest in the lower back for both production line and office workers over the past year. The job satisfaction factor exhibited the highest risk level among the questionnaire’s four subgroups. Approximately 85% of participants were classified as having a high or very high-risk level, reflecting concerning conditions among the employees. The prevalence of WMSDs in different body parts significantly correlated with all physical and psychosocial stress factors.
Conclusion: This research highlights the influence of diverse physical and psychosocial risk factors on the occurrence of WMSDs among both occupational workers and office employees. Also, the MDRF questionnaire, whose high applicability in assessing the WMSDs risk factors was proven in this study, is an effective tool for prioritizing, planning, and executing educational and preventive measures within the workforce community to mitigate and prevent WMSDs. 
Pourya Ahmadi Jalaldehi, Jila Yavarian, Farideh Golbabaei, Saba Kalantary, Abbas Rahimi Foroushani, Hossein Abbaslou,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: The COVID-19 pandemic has been a significant global health challenge. Primary care services, such as screening health centers, were crucial in identifying infected individuals. However, these centers were often crowded and posed a high risk to staff and non-COVID-19 patients. This study aims to assess the risk of airborne transmission of SARS-CoV-2 in such settings through simulation.
Material and Methods: In this study, waiting and sampling rooms of a COVID-19 healthcare center were simulated using different scenarios. Then, the Quanta emission rate was estimated using the viral load in the sputum of infected individuals. Finally, the airborne transmission risk of SARS-CoV-2 was determined using the Wells-Riley method for scenarios of wearing and without masks.
Results: The study showed that the Quanta emission rate in an unmodulated speaking activity was higher than other expiratory activities in both units (p <0.001). Also, the total amount of Quanta was slightly higher in the sampling room than in the waiting room, which was not statistically significant. On the other hand, the calculation of transmission risk showed that the probability of airborne virus transmission in the sampling room was higher (about 2 to 8%). In addition, wearing masks reduced the possibility of airborne transmission of the virus significantly (77 to 81%).
Conclusion: This study shows that the level of risk in the sampling and waiting rooms is moderate. Masks also significantly reduce the possibility of airborne transmission of SARS-CoV-2. Taking appropriate health and safety measures such as avoiding crowds, wearing masks, whispering, and monitoring social distancing can reduce the plausibility of airborne transmission of the SARS-CoV-2 virus.
 
Zahra Naghavi-Konjin, Vajiheh Keshavarz, Khadijah Gheysar Koushki, Afsaneh Yazdani Niko, Jamshid Yazdani Charati, Mohsen Gorgani Firouzjaei,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: People’s risk perception in an emergency situation affects how they behave. During the pandemic of a disease like COVID-19, the fear of the disease and its consequences causes people to deal with anxiety. The present study was conducted with the aim of determining the relationship between the perception of the risk of COVID-19 and the experience of anxiety caused by it among workers in manufacturing industries. 
Material and Methods: The present descriptive-analytical study was conducted cross-sectionally in 2022 among 545 workers of manufacturing industries located in Tehran, Mazandaran and North-Khorasan provinces. In the study, data collection was conducted using three questionnaires: a demographic information questionnaire, the COVID-19 Disease Anxiety Scale (CDAS), and the COVID-19 Risk Perception and Psychological Predictors against COVID-19 questionnaire. Data analysis was done using descriptive (mean and standard deviation) and analytical statistics (Canonical Correlation Coefficients or CCC) in SPSS V25 software.
Results: The mean ± SD of the workers’ age was 35.98 ± 7.58 years, while the scores for risk perception and anxiety were 12.89 ± 3.31 and 4.51 ± 1.51, respectively. The Concordance Correlation Coefficient (CCC) between risk perception and anxiety caused by the COVID-19 disease in the first Canonical point was 0.734, and in the second Canonical point, it was 0.229. The corresponding p-value was found to be less than 0.01. Psychological symptoms (Canonical loading = -0.725) and physical symptoms (Canonical loading = -0.421) played a significant role in predicting the variability of the risk perception of COVID-19.
Conclusion: The perception of risk related to the COVID-19 disease resulted in a decrease in anxiety, having a more pronounced effect on psychological symptoms compared to physical symptoms. Therefore, in times of pandemic outbreaks similar to COVID-19, implementing measures that enhance workers’ awareness and understanding of the disease risks can prove effective in managing anxiety. 
Mehran Maleki Roveshti, Zahra Naghavi-Konjin, Siavash Etemadinezhad, Jamshid Yazdani Charati,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: Steel erection is known as one of the most hazardous construction activities. From an occupational health and safety perspective, this process carries high risk. Therefore, this study aims to conduct a qualitative risk analysis of steel structure assembly and model it using the Functional Resonance Analysis Method (FRAM).
Material and Methods: In this cross-sectional study, the construction site of a high-rise building steel structure was first visited to identify the main processes involved. Then, semi-structured and open-ended interviews were conducted with 33 workers partaking in this process. Data from the interviews and process identification were entered into FRAM Model Visualiser (FMV) software to investigate and model complex relationships and interactions between daily tasks.
Results: Of the 19 major system component functions identified, four functions had potential instability and defects due to complex human, organizational, and technological function interactions. By intensifying the FRAM graphic model, risks may be imposed on the system if the interactions of these four functions are neglected. These include coordination with the experienced rigger, preparation of the tower crane, attachment of parts at the installation site, and execution of the rescue rope.
Conclusion: The findings demonstrate that conducting qualitative risk assessment and modeling the steel frame construction process using FRAM allows for an in-depth understanding of nonlinear conditions and dynamics resulting from escalating technical-social interactions. This approach enables a comprehensive analysis of system safety status.
 
Raheleh Pourhosein, Saeed Musavi, Yahya Rasoulzadeh,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: The accurate evaluation of error probability and risk is important. Accordingly, this Comparative study was conducted to evaluate the risk of human error in emergency situations using SLIM and Fuzzy SLIM techniques in fierfighting tasks.
Material and Methods: This cross-sectional and descriptive-analytical study was conducted among 12, using Fuzzy SLIM and SLIM techniques. 39 sub-tasks were studied in 4 phases (Awareness, Evaluation, Egress and Recovery). Considering the advantages of the Fuzzy SLIM method, fuzzy logic was used in weighting of performance shaping factors (PSF). Excel software was used to calculate the probability of error. Also, correlation and kappa statistical tests were used for data analysis in SPSS software.
Results: The mean and standard deviation of human error probability in different sub-tasks of firefighting in SLIM and Fuzzy SLIM methods were 0.095357 ± 0.026193 and 0.06490 ± 0.051748, respectivly. In 48.7 percent of the sub-tasks, the probability category of human error and the assessed risk were the same; however, in 89.7 percent of the sub-tasks, the estimated level of risk was the same in both methods. Correlation test showed that the correlation coefficient of error probability values between the two methods was 0.32, which indicated a moderate correlation in this regard. Additionally, the results of kappa statistical test for the estimated level of risk showed that there is a high agreement between Fuzzy SLIM and SLIM (P value <0.05).
Conclusion: The results of the study indicated meaningful agreement and a moderate correlation between Fuzzy SLIM and SLIM. Therefore, due to the relatively high accuracy of Fuzzy logic methods, and also the long steps of implementing the SLIM method, the Fuzzy SLIM method can be a good alternative to this method.
Seyed Husein Naziri, Mostafa Pouyakian, Sedigheh Sadegh Hassani, Somayeh Farhang Dehghan,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: Due to uncertainties regarding the risks of engineered nanomaterials for human health and the environment, different organizations and researchers have developed various management frameworks and assessment tools to mitigate hazards during the procedures and applications of engineered nanomaterials. However, most of these techniques do not meet all the individual requirements. This study provides a review and introduction to the techniques developed for the management of safety, health, and environmental risks associated with engineered nanomaterials.
Material and Methods: In order to find pertinent documents on the safe handling of engineered nanomaterials, a search was conducted using the following keywords: “Engineered nanomaterials”, “Framework”, “Tool”, “Risk management”, “Occupational exposure”, “Environment”, “Risk assessment”, and “Nanotechnology”. The search was conducted on various databases, including Scopus, Web of Science, NIOSH, ECHA, and ISO. Among the search results, tools and frameworks that specifically focus on the safety, health, and environmental risk management or assessment of engineered nanomaterials were selected.
Results: Among the search results, 17 frameworks and 11 developments in the field of managing occupational, environmental, and toxicological risks associated with engineered nanomaterials were discussed. Various frameworks and tools for identifying, evaluating, and managing the potential risks of engineered nanomaterials vary in terms of their scope, goals, risk assessment approaches, and output, offering diverse applications.
Conclusion: Various tools and frameworks, each with unique properties, applications, and limitations, can assist organizations in achieving their goals related to safety, health, and environmental issues in the field of nanotechnology. Currently, there is no consensus on the optimal approach for assessing the risks of nanomaterials, underscoring the necessity for additional research, development, and collaboration in this field.
 
Behzad Gholami, Mousa Jabbari, Davood Eskandari,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: One of the ways to produce electricity in power plants is to use gas turbines and generators. Due to the use of methane gas as the fuel of the burners and the high rotation speed, this equipment has a high DOW index level, therefore, if the hazardous conditions in the gas turbine are not controlled by the safety instrumented system and the process is not directed to a safe state, Catastrophic events will occur such as fire and explosion and damage to property and people as well as interruption of the power generation process will happen in the long term, so gas turbine safety instrumentation systems can be considered as “critical safety systems”. Therefore, the reliability and availability of their function should be evaluated. The purpose of this research is to determine and verify the safety integrity level (SIL) related to the safety instrumented function (SIF) of the gas turbine and generator in a combined cycle power plant.
Material and Methods: In this study, the safety integrity level was determined by using two methods, Calibrated Risk Graph (CRG) and Independent Protection Layer Analysis (LOPA), and to verify the safety integrity level, the requirements related to random hardware failure, hardware failure tolerance, and systematic capability are considered according to IEC 61511 and IEC 61508 standards.
Results: The results of a case study in gas turbine and generator showed that the LOPA method is more quantitative than CRG and provides more details of independent protective layers, so it is a more suitable method for determining SIL. The SIL verification results show the SIL2 level, closer to the LOPA results.
Conclusion: The obtained results show that the function of the studied gas turbine safety instrumentation system has a suitable level of reliability and availability and is well responsive to risky conditions and possible deviations. The present approach helps safety engineers and instrumentation engineers to calculate the reliability and availability of the Function of the safety instrumentation systems of their process equipment and ensure its acceptability or not.

Page 2 from 3     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb