Search published articles


Showing 2 results for Aloha

Saber Moradi Hanifi, Leila Omidi, Gholamreza Moradi,
Volume 9, Issue 1 (4-2019)
Abstract

Introduction: Fire and explosion are the most common consequences of natural gas pipeline accidents. The results of previous studies showed a higher rate of accidents in natural gas transmission lines. Given that a large number of people living in the vicinity of natural gas pipelines with a higher severity of related accidents. The aim of current study was to estimate risks using the method of quantitative calculation of risk and simulation of natural gas pipeline leakage using areal locations of hazardous atmospheres (ALOHA) in natural gas power generation.  
Material and Methods: The method of quantitative calculation of risk was used to identify and prioritize risks. The simulation of the consequences of natural gas pipeline leakage was done by ALOHA software. Calculations of individual and social risks were performed based on statistical data obtained from the literature.
Results: The most serious effect of natural gas pipeline leakage was heat radiation effect of jet flame. Considering three leakage apertures in the natural gas pipeline 80, 130, and 300 mm, individual risks for each leakage aperture were 0.073, 0.114, and 0.569 and the number of deaths was 115, 400, and 3386, respectively. Increases in the leak aperture can lead to an increase in the number of deaths and decrease in the cumulative rate of accidents.
Conclusion: The most serious consequence of natural gas pipeline leakage was heat radiation effect of jet flame. The individual risk and social risk are beyond the acceptable risks range.
Rezvan Ghashghaei, Gholam Reza Sabzghabaei, Soolmaz Dashti, Samira Jafari Azar, Farhad Salehipour,
Volume 9, Issue 2 (6-2019)
Abstract

Introduction: The accidents involving the transport of hazardous goods in ports have always been one of the human and environmental threats. The purpose of this research is to study the consequences of incidents involving dangerous goods by modeling and prediction of catastrophic consequences of these goods using the Software valid of management, so in addition to the affected area of the various outcomes of these goods, To provide the necessary management measures to reduce human and environmental toll on keeping dangerous goods in ports and warehouses to be paid.  
Material and Methods: The study performed from PHAST and ALOHA software in the container terminal in the region of Bandar Imam Khomeini and, to verify the consequences of styrene of toxicity of dangerous goods, was used.
Results: According to the results of this study, the extent of pollution coverage (the forbidden region) at least a radius of 79 meters and the best place for placement the Support groups are a radius of 106 meters, around the area dangerous goods. Finally, to offer management practices to avoid or reduce the consequences of possible sites and warehouses storing goods in the study area was dangerous.
Conclusion: In this study, methanol reservoir was introduced as the main focus of risk; therefore, the implementation of safety rules, eliminating mechanical failures, personal protection and education, and effective measures to prevent and fight fire are proposed for decreasing the probable losses and fatalities are necessary. As well as measures such as drainage design and appropriate land cover of hazardous goods and predictions for emergency evacuation with regard to atmospheric conditions (speed and wind direction) were recommended.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb