Search published articles


Showing 7 results for Activated Carbon

F. Golbabaei, R. Moradi Rad, L. Omidi, S. Farhang Dehghan, S. Roshani,
Volume 5, Issue 2 (7-2015)
Abstract

Introduction: Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant current environmental issues. Phenanthrene and naphthalene adsorption at activated carbon beds prevent the release of these compounds into the environment. The objective of this research was to compare the amounts of phenanthrene and naphthalene adsorption at activated carbon beds in the n-hexane solution.

.

Material and Method: This discontinuous experimental study was conducted in the laboratory scale batch and in the n-hexane solution containing phenanthrene and naphthalene.PH values were adjusted by adding hydrochloric acidand 1 N NaOH. The initial and residual phenanthrene and naphthalene concentrations were spectrophotometrically measured at 270 and 266 nm, respectively.

.

Results: Findings showed that the maximum adsorption of naphthalene was obtained at pH=5 and contact time of 8 hours (7.4 mg/gr). The maximum adsorption was reached at pH=7 and contact time of 11 hours for phenanthrene (8.34 mg/gr).Improvement in the adsorption capacity was happenedby the increases in contact time and initial phenanthrene and naphthalene concentrations. The adsorption kinetics of these two compounds followed pseudo-second-order and Freundlich isotherm model.

.

Conclusion: Freundlich isotherm model showed a strong association with PAHs adsorption process. A weak correlationwas observed between Langmuir theory and the results of the adsorption at activated carbon beds in the organic n-hexane solution.


Akram Tabrizi, Farideh Golbabaei, Hamid Shirkhanloo, Mostafa Jafarizaveh, Kamal Azam, Rasoul Yarahmadi,
Volume 6, Issue 2 (6-2016)
Abstract

Introduction: Volatile organic compounds from industrial activities are one of the most important pollutants released into the air and have adverse effects on human and environment. Therefore, they should be removed before releasing into atmosphere. The aim of the study was to evaluate xylene removal from air by nano-grapheme and nano-graphene oxide in comparison with activated carbon adsorbent.

Material and Method:  After preparing adsorbents of activated carbon, nano-graphene, and nano-graphene oxide, experiments adsorption capacity in static mode (Batch) were carried out in a glass vial. Some variables including contact time, the amount of adsorbent, the concentration of xylene, and the temperature were studied. Langmuir absorption isotherms were used in order to study the adsorption capacity of xylene on adsorbents. Moreover, sample analysis was done by gas chromatography with Flame Ionization Detector (GC-FID).

Results: The adsorption capacities of activated carbon, nano-graphene oxide and nano-graphene for removal of xylene were obtained 349.8, 14.5, and 490 mg/g, respectively. The results of Scanning Electron Microscope (SEM) for nano-graphene and nano-graphene oxide showed particle size of less than 100 nm. While, the results of Transmission Electron Microscope (TEM) showed particle size of 45nm for nano-graphene and 65 nm for nano-graphene oxide. Also, X-Ray Diffraction (XRD) showed cube structure of nano-adsorbents.

Conclusion: In constant humidity, increase in exposure time and temperature caused an increase in the adsorption capacity. The results revealed greater adsorption capacity of xylene removal for nano-graphene compared to the activated carbon, and nano-graphene oxide.


Elham Rahmanzadeh, Farideh Golbabaei, Ali Faghihi Zarandi, Seyed Gholamreza Moussavi, Mohammadreza Baneshi,
Volume 7, Issue 3 (9-2017)
Abstract

Introduction: Hexavalent chromium (VI) is a very strong oxidizing agent that, despite its many uses in various industries, duration of the exposure can lead to lung cancer, deep wounds (in the hands, arm, tongue and palate), nasal septum perforation, burning and inflammation in the nose, lung and upper respiratory tract, asthma, contact dermatitis, damage to the kidneys and liver, and skin allergy. This study aimed to determine the activated carbon efficiency in chromium adsorption (VI) from air flow and its effective parameters. 

Material and Method: In this experimental study, chromium mists were generated by a nebulizer (3A model, Italy). Performance of activated carbon in the Cr (VI) adsorption and its influencing factors such as air flow rate (1 and 3L/min), the initial Cr concentration (0.05, 0.15, 1 and 10 mg/m3) and bed depth (2.5, 5 and 10 cm) were investigated. Yoon-Nelson and Thomas models were used to predict performance of adsorbent column and correlation test was used to determine accordance between the model and actual data.

Result: Activated carbon adsorption capacity increased with increasing of bed depth but decreased with increasing of flow rate and inlet concentration. The results showed that the Yoon-Nelson and Thomas models with a correlation coefficient above 0.9953 matched with the experimental data.

Conclusion: The results indicated that activated carbon has a high efficiency in Cr (VI) adsorption, so that its efficiency at flow rate of 3 L/m, depth of 5 cm and concentration of 20 TLV and TLV was 85.42 and 71.83 percent respectively.


Asghar Ghahri, Farideh Golbabaei, Leila Vafajoo, Seyed Mohammad Mireskandari, Mehdi Yaseri, Seyed Jamaleddin Shahtaheri, Faranak Najarian,
Volume 8, Issue 2 (6-2018)
Abstract

Introduction: Anesthetic gases used in hospitals include N2O and halogenated hydrocarbons (such as sevoflurane) which can be released through leakages and uncontrolled exhalation by the patient into the ambient air of clinical staff. These gases have greenhouse effect and damage to the ozone layer and serious risks such as reproductive, preterm delivery and fetal abnormalities and increased spontaneous abortion on the health of operating room personnel. Therefore, removal of these gases from the workplaces is essential especially in the treatment centers. The purpose of the present study was to investigate the adsorption of sevoflurane from air by using activated Charcoal and also the effect of acid modification on its performance.
 

Material and Method: In this study, two adsorbents of unmodified and modified activated charcoal with nitric acid were used to remove sevoflurane. After preparation, the adsorbents were characterized using XRD, FT-IR, BET and FE-SEM methods. After characterization, the breakthrough and adsorption capacity of sevoflurane on both adsorbents were determined using the modified wheeler equation.
 

Result: The results of characterization showed that acid modification did not affect the crystalline structure of activated charcoal and increased the adsorption and microporous of acid-modified activated charcoal in comparison with unmodified activated charcoal. It also reduces surface functional groups of the activated carbon. The results of determination of adsorption capacity indicated that the adsorption capacity of modified activated charcoal was improved in comparison with unmodified activated charcoal.
 

Conclusion: The results demonstrated that both adsorbents have the ability to absorb sevoflurane and modified activated charcoal have a better performance in this process. This effect may be due to the surface area of adsorption and volume of micro pores more than the unmodified activated charcoal.


Faranak Najarian, Farideh Golbabaei, Asghar Ghahri, Kamal Azam,
Volume 9, Issue 4 (12-2019)
Abstract

Introduction: Occupational exposure to sevoflurane as an anesthetic gases in hospitals, dental clinics and veterinary clinics has been reported in various studies. Considering the harmful effects of sevoflurane anesthetic gas on the health of exposed personnel such as reproductive, preterm delivery and fetal abnormalities and increased spontaneous abortion, it is necessary to remove them from the air of the work environment, especially the treatment centers, with inexpensive and optimal methods. This study was aimed to compare two oxide-titanium based on Activated Carbon/ Graphene Oxide Nanosheets in nano and non-nano scales.
Material and Methods: Titanium oxide particles and nanoparticles were coated on actived carbon/ Graphene Oxide Nanosheets adsorbents. The prepared sorbents were characterized by instrumental techniques such as BET, SEM, XRD, FTIR and SEM-EDS to determine their properties. After characterization, the breakthrough and adsorption capacity of sevoflurane on both adsorbents were determined using the modified wheeler equation. Finally, the software of Microsoft Office Excel 2016 and SPSS Statistic version 21 IBM were used for statistical analysis of data.
Results: the results of XRD, SEM-EDAX analysis confirmed the stabilization of titanium oxide particles and nanoparticles on the sorbents. Furthermore, the FTIR results determined the functional groups on the sorbents. The BET results also showed the coating of titanium oxide nanoparticles on composite decreased the specific surface area of adsorption in comparison to adsorption containing titanium oxide particles. The adsorption capacity of the activated carbon/ Graphene Oxide Nanosheets coated with titanium oxide nanoparticles and titanium oxide particles were 240.7 and 210.5 mg sevoflurane per gram of sorbent, respectively (p-value<0.001).
Conclusion: The results showed that composite of activated carbon/nano oxide graphene coated with titanium oxide nanoparticles has a higher adsorption capacity of sevoflurane than other composite coated with titanium oxide particle, under the same conditions. This increase can be as a result of changes in surface chemistry (increase of the functional groups) in composite.
Zahra Alaei, Roohollah Ghasemi, Mohammad Reza Pourmand, Ali Karimi, Ensieh Masoorian, Farideh Golbabaei,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Volatile organic compounds are the most common pollutants in the air, and among them, toluene is the most common form, which is toxic resulting in liver and kidneys damages. Regarding the fact that this compound is widely used in various chemical industries, implementing an efficient method for controlling its concentration is of great importance. The comparative survey of the capability of virgin activated carbon with the one immobilized by pseudomonas putida PTCC, and also the performance of the biofiltration system involving pseudomonas putida bacteria immobilized on activated carbon for the adsorption and degradation of toluene from the air as well as regenerating the activated carbon were aimed in the present study.
Material and Methods: The microbial growth process was initiated by incubation of pre-culture in a rotary shaker, at 150rpm overnight. After 4 days, the strain pseudomonas putida, PTCC No: 1694 was immobilized on a certain amount of activated carbon. Subsequently, an airstream containing toluene was introduced into the biofilter, and the inlet and outlet concentrations of toluene were measured.
Results: The obtained results illustrated that the increase in the volume of the media and decrease in the gas flow rate significantly enhances efficiency. The great performance of the biofilter was confirmed by the high efficiency of the immobilized activated carbon which exhibited 89% yield during 14 hours. On the second cycle, the biofiltration system was able to adsorb toluene at an efficiency of 81%, while the virgin activated carbon exhibited far less efficiency with the value of 28%.
Conclusion: The provided results demonstrated the feasibility and reusability of the biofilter system for toluene removal. The proposed technique also extends the activated carbon’s capacity, which could be a potential solution to re-use the activated carbon in industrial applications.

Mahdi Alinia Ahandani, Saba Kalantary, Monireh Khadem, Fatemeh Jafari, Kamal Azam, Farideh Golbabaei,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: VOCs are harmful air pollutants that must be detected, monitored and eliminated. Adsorber tubes are standard tools for this task, specifically activated carbon tubes with high adsorption and selectivity. This research aims to compare the structural and functional characteristics of domestically produced activated carbon tubes with the conventional commercial ones for sampling toluene, a volatile organic compound.
Material and Methods: The characteristics of each adsorbent, such as structure, morphology, porosity, and element composition, were examined by SEM photography, BET testing, and EDAX analysis. The central composite design (CCD) method was employed to investigate the adsorption properties of the adsorbents. The input concentration and readsorption time of the samples were the variables considered in this study. Additionally, a field phase of personal air sampling was performed to evaluate the effectiveness of adsorbent tubes.
Results: SEM and BET analyses indicated that the porous structure of domestic activated carbon was comparable to the model produced by SKC. EDAX analysis detected a minor impurity (1%) in the domestic activated carbon adsorbent. The adsorption performance was significantly influenced by the variations in readsorption time and pollutant input concentration. The accuracy and precision of the performance of the domestic adsorbent tube were obtained as 90.77% and 91.76%. The field phase results demonstrated that the amount of pollutant adsorbed in the SKC-activated charcoal adsorber did not differ significantly during 0 to 30 days. However, the domestic adsorber showed a significant difference in the same period. The overall performance of the two adsorbers did not exhibit a significant difference between 0 and 30 days.
Conclusion: Despite minor structural differences, the adsorption efficiency of toluene by domestic adsorbent tubes in sampling high concentrations is very similar to its commercial type. However, it is not recommended for use in low-concentration environments (10 ppm and less).

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb