Search published articles


Showing 3 results for Electromagnetic

R. Golmohammadi , H. Ebrahimi, M. Fallahi, A. Soltanzadeh, S. S. Mousavi,
Volume 4, Issue 1 (5-2014)
Abstract

Introduction: Electromagnetic field emitted by laptops are known as extremely low frequency (ELF) Waves. The aim of this study was to investigate the intensity of electric and magnetic field with extremely low frequency emitted by common laptops.

.

Material and Method: Intensity of electric and magnetic field were measured on four sides of 40 common by used laptop at the distance of 30, 60 and 90 cm. Measurements ere done according to standard in four functional model including: non-performing turned on, sleep mode, performing office program and performing audio visual files.

.

Result: Magnetic field values for all laptops were almost constant and about 28-32 mA/m. The results of measurements related to the electric field showed different values at distances of 30, 60 and 90 cm around the laptops on four sides. Moreover, mean electric field on the keyboard at the four operating modes were statistically different for DELL and hp laptops (P< 0/05).

.

Conclusion: The results of this study showed that laptops produce extremely low frequency (ELF) electric and magnetic fields which their intensity depends on laptop type, laptop operation mode and the location of the measurement.


Vida Zaroushani, Ali Khavanin, Ahmad Jonidi Jafari, Seyed Bagher Mortazavi, Farahnaz Khajenasiri,
Volume 6, Issue 4 (12-2016)
Abstract

Introduction: Due to the importance of engineering controls for prevention of microwave exposure, this study was conducted to design and constract a novel electromagnetic shielding and also to examine the factors influencing shielding efficacy in X band frequency range.

Material and Method: This study used Resin Epoxy as matrix and nano-Nickel Oxide as filler to prepare the composite plates with three different thicknesses (2,4, and 6 mm) and four different weight percentages (5,7,9 and 11). The fabricated composites characterized using X-ray diffraction and Field Emission Scanning Electron microscopy. Shielding effectiveness, percolation depth, and percolation threshold were measured using Vector Network Analyzers. Thermal Gravimetric Analysis was conducted to study the temperature influence on weight loss for fabricated composites.

Result: A maximum shielding effectiveness value of 84.18% was obtained for the 11%-6mm composite at 8.01 GHz and the 7%-4mm composite exhibits a higher average of shielding effectiveness of 66.72% at X- band frequency range. The 4mm thickness was optimum and critical diameter for composite plates; and percolation depth was obtained greater than thickness of composites. However, increasing the nickel oxide content did not show noticeable effect on the shielding effectiveness. Thermal Gravimetric Analysis showed that the study shields were resistant to temperature up to 150 °C without experiencing weight loss. What is more, the results indicated that Nickel oxide Nano particles had desirable distribution and dispersion in epoxy matrix and percolation threshold was appeared in low content of nickel oxide nanoparticles.

Conclusion: A novel electromagnetic shield using low thickness and few content of nanoparticle with noticeable efficacy was properly designed and constructed in the field of occupational health. In addition, this shield has low cost, easy to manufacture, resistance to wet/corrosion, and low weight. Epoxy/nickel oxide composite can represents a new generation of electromagnetic shielding, which is considered as a promising candidate for occupational protection against microwave exposure. It is recommended that future studies improve the shielding effectiveness by decreasing the percolation depth and investigate the efficacy of the fabricated shield in the workplaces.


Ali Khavanin, Ahmad Jonidi Jafari, Ali Safari Variani, Vida Zaroushani,
Volume 8, Issue 1 (4-2018)
Abstract

Introduction: Nowadays, demand for protection against radar radiation using electromagnetic shielding is on the rise.  Double-layer or multilayer shielding were devised in order to improve the single layer electromagnetic shielding properties. In this study, we tried to prepare a new double-layers electromagnetic shield and investigate the effect of structural factors such as thickness, similarity in layers and mixing time on the shielding effectiveness for double-layers shields.

Material and Method: This study used the Resin Epoxy EI-403 and Nickel Oxide nanoparticles to prepare single layer shields by casting method (with two different mixing time: 10 and 66 min) in 2, 4 and 6 mm thicknesses and 7 wt% Nickel oxide nanoparticles. Then, in order to prepare double-layers shields, single-layer shields were placed on each other without air space. Scattering parameters were measured by a Vector Network Analyzer (V.N.A) and shielding effectiveness were calculated in X-band radar frequency range.

Result: The highest and the lowest averages of shielding effectiveness in single layer shields were 84.14% and 46.05%, respectively. These values were 66.34% and 41.99 %, in double layers electromagnetic shields. The averages of shielding effectiveness values in the double-layers shields (with 10 min in mixing time) in 6, 8 and 10 mm in thickness were 41.99%, 45.45% and 43.25%, respectively. These values in 66 min in mixing time, increased to 54.30%, 62.07% and 66.34%, respectively.

Conclusion: In this study, the shielding effectiveness in double-layers were less than single layer electromagnetic shields. Although the increase in mixing time improved the shielding effectiveness of both single and double layer shields, it could not increase the shielding effectiveness in double layer shields in comparison with single layer. Also, the increase in mixing time in double-layer shields showed that shielding effectiveness decreased with increasing thickness in these shields. Also, it was seen that using a similar single-layer shield in the structural of a double-layer shield led to an increase in skin depth and multi reflections .It finally reduced the shielding efficiency in double layer. It is suggested that in the future, other studies be conduct to improve the shielding effectiveness in these electromagnetic shields.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb