Search published articles


Showing 2 results for Emergency Situation

, , , ,
Volume 2, Issue 3 (12-2012)
Abstract

Introduction: Emergency situation is one of the influencing factors on human error. The aim of this research was purpose to evaluate human error in emergency situation of fire and explosion at the oil company warehouse in Hamadan city applying human error probability index (HEPI).

.

Material and Method: First, the scenario of emergency situation of those situation of fire and explosion at the oil company warehouse was designed and then maneuver against, was performed. The scaled questionnaire of muster for the maneuver was completed in the next stage. Collected data were analyzed to calculate the probability success for the 18 actions required in an emergency situation from starting point of the muster until the latest action to temporary sheltersafe.

.

Result: The result showed that the highest probability of error occurrence was related to make safe workplace (evaluation phase) with 32.4 % and lowest probability of occurrence error in detection alarm (awareness phase) with 1.8 %, probability. The highest severity of error was in the evaluation phase and the lowest severity of error was in the awareness and recovery phase. Maximum risk level was related to the evaluating exit routes and selecting one route and choosy another exit route and minimum risk level was related to the four evaluation phases.

.

Conclusion: To reduce the risk of reaction in the exit phases of an emergency situation, the following actions are recommended, based on the finding in this study: A periodic evaluation of the exit phase and modifying them if necessary, conducting more maneuvers and analyzing this results along with a sufficient feedback to the employees.


Raheleh Pourhosein, Saeed Musavi, Yahya Rasoulzadeh,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: The accurate evaluation of error probability and risk is important. Accordingly, this Comparative study was conducted to evaluate the risk of human error in emergency situations using SLIM and Fuzzy SLIM techniques in fierfighting tasks.
Material and Methods: This cross-sectional and descriptive-analytical study was conducted among 12, using Fuzzy SLIM and SLIM techniques. 39 sub-tasks were studied in 4 phases (Awareness, Evaluation, Egress and Recovery). Considering the advantages of the Fuzzy SLIM method, fuzzy logic was used in weighting of performance shaping factors (PSF). Excel software was used to calculate the probability of error. Also, correlation and kappa statistical tests were used for data analysis in SPSS software.
Results: The mean and standard deviation of human error probability in different sub-tasks of firefighting in SLIM and Fuzzy SLIM methods were 0.095357 ± 0.026193 and 0.06490 ± 0.051748, respectivly. In 48.7 percent of the sub-tasks, the probability category of human error and the assessed risk were the same; however, in 89.7 percent of the sub-tasks, the estimated level of risk was the same in both methods. Correlation test showed that the correlation coefficient of error probability values between the two methods was 0.32, which indicated a moderate correlation in this regard. Additionally, the results of kappa statistical test for the estimated level of risk showed that there is a high agreement between Fuzzy SLIM and SLIM (P value <0.05).
Conclusion: The results of the study indicated meaningful agreement and a moderate correlation between Fuzzy SLIM and SLIM. Therefore, due to the relatively high accuracy of Fuzzy logic methods, and also the long steps of implementing the SLIM method, the Fuzzy SLIM method can be a good alternative to this method.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb