Search published articles


Showing 3 results for Filtration Efficiency

Majid Habibi Mohraz, Farideh Golbabaei, Il Je Yu, Asghar Sedigh Zadeh, Mohammad Ali Mansournia, Somayeh Farhang Dehghan,
Volume 8, Issue 1 (4-2018)
Abstract

Introduction: Electrospun nanofibers are suitable option to synthesize filtering mats for nanoparticles. This study was aimed to fabricate polyurethane nanofiber mats through electrospinning process and to investigate the effect of different parameters such as packing density, face velocity and particle type on the filtration efficiency and quality factor of electrospun polyurethane nanofiber mats.
 

Material and Method: The nanofiber mats were produced by electrospinning  process. Polyurethane granules were dissolved (15w/w%) in a solvent system consisting of dimethylformamide and tetrahydrofuran (3:2). Then, the filtration performance testing system was made at the Fluid Mechanics Department of Hanyang University of South Korea and the filtration efficiency and pressure drop of prepared nanofiber mats were studied.
 

Result: Findings showed that by increasing the duration of electrospinning, the basis weight, thickness, packing density, initial pressure drop and filtration efficiency of the mats increased, and the quality factor of the mats decreased due to the increase of the pressure drop. The increase in electrospinning duration from 15 to 45 minutes was led to the increase in pressure drop from 7 to 32 Pa and the average filtration efficiency was increased about 9-10% for KCl and DEHS test particles. The filtration efficiency and quality factor of the prepared polyurethane nanofiber mats were declined with the increase of filtration face velocity from 2 to 5 and 10 cm/s. The reduction in filtration efficiency was more obvious for particles smaller than 425 nm.
 

Conclusion: The results demonstrated that prepared polyurethan naofiber mats provide acceptable filtration performance. What is more, such nanofiber mats can have other potential benefits such as light basis weight, low thickness and simple production.


Siavash Azad, Yousef Rashidi, Farideh Golbabaei,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: The important parameters for evaluating the performance of particle filtering respirators in international standards are the filtration efficiency and respiratory resistance of the mask filter against airflow passage. To improve nanofiber filtration efficiency while creating the least breathing difficulty for the wearer, various research has been or is being conducted worldwide. This study investigated the effect of using polyacrylonitrile (PAN) nanofiber composite membrane and montmorillonite clay nanoparticles (MMT) in enhancing particle-filtering respirators’ filter performance, achieving higher filtration efficiency while maintaining optimal respiratory resistance conditions.
Material and Methods: First, PAN polymer solution containing zero, 1%, 2%, 3%, and 5% MMT nanoparticles was prepared, and then PAN/MMT nanofiber composite membrane was synthesized in an electrospinning machine. Filtration efficiency was measured in diameter range of 0.3, 0.5, 1, and 3 microns using sodium chloride aerosol. Additionally, filter breathing resistance was measured at flow rates of 30, 85, and 95 liters per minute.
Results: The efficiency of synthesized composite nanofilters for particle purification can be improved by adding MMT nanoparticles to PAN nanofibers. Optimal MMT concentration was found to be 2%. This addition resulted in an increase in filtration efficiency for particles with sizes of 0.3, 0.5, 1, and 3 microns by 4.2%, 4.88%, 3.77%, and 2.75% respectively without causing significant difference in respiratory resistance. Improved filtration efficiency can be attributed to enhanced morphology of composite nanofilters resulting from addition of MMT nanoparticles. Adding 2% MMT nanoparticles to PAN nanofibers resulted in uniform distribution and smaller fiber dimensions which did not significantly affect Packing density and porosity.
Conclusion: If 2% of MMT nanoparticles are added to PAN nanofibers and used to produce particle respirators, resulting respirator will exhibit a 4.2% increase in particle filtration efficiency without increasing breathing difficulty for user. This result can help protect users from particulate pollutants in air pollution conditions.
Saba Kalantary, Mohammad Reza Pourmand, Ensieh Masoorian, Mirghani Seyd Someah, Zahra Barkhordarian, Sara Hajinejad, Farideh Golbabaei,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: Protection of the respiratory system has been a vital, and for this purpose, various solutions have been proposed, including the use of masks. One of the most important parameters to measure the effectiveness of the mask against the penetration of microbial agents. The present study was conducted with the aim of evaluating the bacterial and particle filtration of medical masks.
Material and Methods: To assess bacterial performance, the national standard 6138, compliant with EN14683, and Type I medical masks were utilized. Staphylococcus aureus bacterial suspension was prepared and passed through the mask using a nebulizer and through an impactor with a flow rate of 28.3 l/min. Plates containing soy agar were placed in the impactor. Subsequently, all plates were incubated, and the bacterial filtration efficiency (BFE) of the masks was determined by counting the bacterial colonies that passed through the mask’s media as a percentage of the total bacteria. It is worth noting that the pressure drop and particle filtration efficiency were also determined for all masks
Results: Based on the results of the particle removal performance for the particle size of 3 µ, the masks were categorized into three groups with efficiency above 99%, above 95% and 90%. According to the standard, all masks had an acceptable pressure drop below 40 Pa. The acceptable bacterial filtration rate for type I masks should be above 95%. The results showed that type A and B masks have an acceptable bacterial filtration rate and there is a significant correlation between the types of masks examined in terms of bacterial and particle efficiency.
Conclusion: The results showed that different types of masks under investigation have significant differences in terms of particle capture efficiency and bacterial filtration performance. In addition, there is a significant correlation between bacterial and particle filtration efficiency.
 

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb