Search published articles


Showing 4 results for Health Risk Assessment

Bahram Harati, Seyed Jamaleddin Shahtaheri, Ali Karimi, Kamal Azam, Alireza Ahmadi, Maryam Afzali Rad, Ali Harati,
Volume 7, Issue 2 (6-2017)
Abstract

Introduction: In recent years, many national and international expert groups have considered specific improvements in risk assessment of chemical pollutants. This study considered to assess the risk of workers exposure to air pollutants in an automobile manufacturing in order to evaluate the health risk assessment due to the inhalation exposure.  

Material and Method: To perform this study, a cross-sectional research was done in 2016. Methods number 1501 and 7602 of the National Institute of occupational safety and Health (NIOSH) were used for sampling and analysis of compounds BTEX and silica in the air. A total of 40 samples of compound BTEX were taken and analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID). A total of 6 samples of silica were collected during the campaign. Silica analyses were performed by using visible spectrophotometry. Risk ranking was calculated using the hazard and exposure rate. Finally, the relative risk of blood cancer caused by exposure to benzene was estimated.   

Result: The result demonstrated that, workers were exposed to 5 chemicals including silica, benzene, toluene, ethyl-benzene, and xylene during their work in manufactory. Among the pollutants in the breathing zone of workers, Silica and benzene were hazardous chemicals at high risk level. Following the estimation of relative risk of blood cancer caused by exposure to benzene, workers cumulative exposure to benzene was obtained to be 23.1 ppm per year and the capture relative risk was 1.1. The consequence demonstrated that, significant relationships were seen between workers exposure to benzene and both age and work experience, so that degree of exposure decreased steadily with increasing age and experience (P<0.001).

Conclusion: This research demonstrated that, benzene and silica in the automobile manufacturing were the highest risk. Also, painting hall workers, at automobile manufacturing, were directly exposed to the blood cancer risk of benzene.


Fateme Dehghani, Farideh Golbabaei, Seyed Abolfazl Zakerian, Fariborz Omidi, Mohammad Ali Mansournia,
Volume 8, Issue 1 (4-2018)
Abstract

Introduction: Adverse effects of volatile organic compounds (VOCs) including general and specific effects like carcinogenic of benzene are well known. The aim of this study was to evaluate occupational exposure to BTEX compounds in the painting unit of an automotive industry and subsequently health risk assessment of exposure to these compounds.

Material and Method: This cross-sectional study was conducted in the paint unit of an automotive industry including painting cabin, pre-painting salon and painting salon sections. After analyzing samples, gathered from different sections, by GC-MS, BTEX compound were identified as the main contaminants. In the next step, NIOSH1501 and EPA methods were used to measure and analysis of BTEX and risk assessment, respectively.

Result: Findings showed that benzene concentration in painting cabin was higher than occupational exposure limits provided by the Environmental and Occupational Health Center of Iran. Life time cancer risk for benzene per 1000 has been reported10, 3.63 and 1.27in the painting cabin, pre-painting and salon sections, respectively. It was also for ethyl benzene 2.5m 1.8 and 38.0 in the mentioned sections, respectively. The non-cancer risk for benzene and xylene in the painting cabin and pre-painting sections were higher than recommended allowable level.

Conclusion: Regarding the high level of cancer risk values obtained for benzene and ethylbenzene in the studied units and also high values of non-cancer risk for benzene and xylene, it is recommended to conduct biological exposure assessmnet of the workers and improve existence control systems using modern engineering control systems.


Fariborz Omidi, Reza Ali Fallahzadeh, Fateme Dehghani, Bahram Harati, Saied Barati Chamgordani, Vahid Gharibi,
Volume 8, Issue 3 (9-2018)
Abstract

Introduction: Workers in steel manufacturing companies are extensively exposed to the volatile organic compounds (VOCs). Considering the health effects of these compounds, the purpose of this study was to determine occupational exposure to the BTEX compounds and also evaluation of carcinogenic risk due to benzene and non- carcinogenic risk for BTEX compounds in a steel industry.

Material and Method: This cross-sectional study was conducted in the coke production unit of the steel making industry. After collecting personal samples from breathing zone of the workers and analyzing of the samples the levels of exposure to the BTEX were quantitatively determined using Gas chromatography equipped with Flame Ionization Detector (GC-FID), according to the NIOSH 1501 standard method. Then, cancer risk due to benzene and non-cancer risks from BTEX compounds were calculated using Monte-Carlo technique.

Result: The analysis of personal samples indicated that benzene concentration in energy and biochemistry and benzol refinement sections of the plant were higher than occupational exposure limits (OELs). Among the studied sections, benzol refinement as the most polluted section had the highest concentration of BTEX compounds. Non-cancer risk due to BTEX compounds in all studied sections was lower than one. Benzene cancer risk in energy and biochemistry, benzol refinement and experimental furnace sections was higher than maximum recommended value by EPA.

Conclusion: Due to the high concentration of benzene in energy and biochemistry and benzene refinement sections as well as the resultant carcinogenic risk, improvement of existing control systems and the use of modern engineering systems are necessary to control occupational exposure.


Vahid Ahmadi Moshiran, Ali Karimi, Farideh Golbabaei, Mohsen Sadeghi Yarandi, Ali Asghar Sajediyan, Aysa Ghasemi Koozekonan,
Volume 10, Issue 4 (11-2020)
Abstract

Introduction: Styrene (C₆H₅CH=CH₂) is known as one of the volatile organic substances produced or used in petrochemical industries. Exposure to this chemical compound can thus lead to respiratory diseases. Therefore, this study aimed to evaluate occupational exposure to styrene vapor and to determine the risks of its health consequences in petrochemical industry workers through a quantitative method.
Material and Methods: In this descriptive cross-sectional study, a total number of 150 samples from 50 employees were studied using the National Institute for Occupational Safety and Health (NIOSH) 1501 method. The samples were then analyzed by the Varian CP-3800 chromatograph. Upon determining exposure to styrene vapor, the risk assessment of the health consequences of styrene in the workers in the given industry was evaluated via the relationships established by the United States Environmental Protection Agency (US/EPA).
Results: According to the results, the polybutadiene latex unit (PBL) was observed with the highest average exposure (0.44 mg.(kg-day)-1). Therefore, the top predictors of carcinogenic and non-carcinogenic risks were valued 0.44 and 0.71, respectively, for the PBL unit. Given the lowest average exposure (0.0012 mg.(kg-day)-1) in the drying unit, the prediction revealed the most moderate carcinogenic (0.1 ×10-5) and non-carcinogenic risks (2×10-3) for the same employees.
Conclusion: Overall, the health risk was higher than the permissible limit in the petrochemical industry studied, especially in the PBL unit. Therefore, it is recommended to make use of artificial ventilation, notably the local type, in addition to the natural ones.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb