Showing 3 results for Iot
F. Golbabaei, S. H. R. Mousavi, M. R. Pourmand, H. R. Pour Agha Shahneshin, A. Rahimi Foroushani, R. Bakhtiari,
Volume 5, Issue 1 (4-2015)
Abstract
Introduction: Volatile organic compounds such as xylene, which are the main constituents of the oil and petrochemical industries, have serious impacts on health and can cause adverse effects on the environment. It is clear that release of these compounds into the environment should be controlled. The two-phases partitioning stirred tank bio-reactor is one of the newest methods for treating these compounds which have few side-effects besides of having appropriate efficiency since itdestroyscontaminant completely and transform it tosafer compounds.
.
Material and Method: In this study, a two phase partitioning stirred tank bio-reactor, in lab scale, was used for treating the gas stream containing xylene vapors. The aqueous phase containing the bacteria Pseudomonas putida and nutrients inserted into the bioreactor with 3:1 ratio and system performance was evaluated for 432 hours in the concentration range of 1000 mg/m3 to 3500 mg/m3
.
Result: Empirical findings of this study showed that the maximum, minimum and average of removal of xylene vapors by stirred two phase bioreactor containing a pure strain of Pseudomonas putida were 94.00, 54.00 and 84.94 percent, respectively.Furthermore, maximum, minimum and average of elimination capacity of xylene were obtained 93.00,24.00 and 62.02 g/m3/h, respectively
.
Conclusion: Overall, the results of the present research revealed that the application of two phase stirred tank bioreactors (TPPBs) containing pure strains of Pseudomonas putida was successful for treatment of air streams with xylene.
Mojtaba Zokaei, Milad Abbasi, Mohsen Vahidnia, Mohamad Zarie, Fardin Zndsalimi, Mohsen Falahati,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Nowadays, the statistics prove that the underground construction projects in the country are increasing, as well as the number of accidents arising from the unsafe condition of these projects. The purpose of this study was to create a framework of safety and health risk management in the construction phase of the Tehran Metro Line 7 tunnel, using IoT technology.
Material and Methods: In the first stage, the national safety and health standards, laws and requirements related to the mentioned hazards were collected. In the second stage, the criteria and permissible limits of exposure to occupational hazards were determined. Next, sensors with optical, auditory, gas detection, and visual capabilities connected to the network were examined, and computer programming and comparing sensor information with the specified standards were carried out. Finally, intelligent warning and control systems related to the determined hazards were proposed.
Results: In this study, a combined model of risk management utilizing IoT for controlling and monitoring safety and health hazards such as sound, light, explosive and toxic gases was proposed. According to the model, sensors for detecting the mentioned hazards were determined and coded based on the permissible limit of each of the harmful factors.
Conclusion: This study has shown that by employing specialized IT and safety knowledge and utilizing relevant software and hardware, the concept of the Internet of Things can be utilized in precise monitoring of the concentration levels of flammable and toxic gases, as well as monitoring of physical agents such as noise and light in various workplace, such as metro tunnel construction sites.
Fatemeh Sadat Mirnajafi Zadeh, Mojtaba Khosravi Danesh, Ali Nahvi, Abbas Rahimi Foroushani, Mohammad Javad Sheikhmozafari, Adel Mazloumi,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Despite advancements in road safety and vehicle design, road accidents remain prevalent, a quarter of which are caused by driver distraction. This issue is particularly critical in the public transport sector, especially among urban bus drivers, as distraction can lead to serious injuries and fatalities. Accordingly, this study explored the factors influencing distraction among urban bus drivers through a qualitative approach and a macroergonomics perspective.
Material and Methods: In this study conducted in 2024 in Tehran, 18 urban bus drivers were selected through cluster sampling. The participants included 10 drivers from bus rapid transit (BRT) system and 8 drivers from non-BRT services. Data were collected through semi-structured interviews with the drivers as well as on-site observations. Subsequently, a directed qualitative content analysis approach, based on the balance theory model, was used to analyze the collected data.
Results: The findings revealed that the primary sources of distraction belonged to six levels of the work system, the most cited of which were environment, tasks, and organization. Specifically, inappropriate behavior of other street users as an environmental factor and the driver’s interactions with passengers as task-related factors were identified as key sources. Additionally, organizational factors such as interactions with supervisors and colleagues, as well as salary issues, were significantly important. The participants very limitedly expressed using mobile phone while driving as a main distractor to their driving.
Conclusion: The current study identified various influential factors, spanning different levels of the work system, affecting bus drivers’ distraction, including generic factors that impact all urban drivers and specific factors that uniquely affect bus drivers. Addressing these factors through providing appropriate education for both passengers and street users along with implementing management strategies in the organization to enhance intra-organizational relationships and organizational support can lead to the safety of the bus drivers.